Are climate models credible worlds? Prospects and limitations of possibilistic climate prediction

  • Gregor BetzEmail author
Original paper in Philosophy of Science


Climate models don’t give us probabilistic forecasts. To interpret their results, alternatively, as serious possibilities seems problematic inasmuch as climate models rely on contrary-to-fact assumptions: why should we consider their implications as possible if their assumptions are known to be false? The paper explores a way to address this possibilistic challenge. It introduces the concepts of a perfect and of an imperfect credible world, and discusses whether climate models can be interpreted as imperfect credible worlds. That would allow one to use models for possibilistic prediction and salvage widespread scientific practice.


Climate model Possibility Scenario Credible world Prediction Representation Uncertainty Idealisation 



I’d like to thank two anonymous reviewers of EJPS and especially the guest editors Wendy Parker and Joel Katzav for their detailed and extremely helpful feedback.


  1. Betz, G. (2007). Probabilities in climate policy advice: a critical comment. Climatic Change, 85(1–2), 1–9.CrossRefGoogle Scholar
  2. Betz, G. (2009). What range of future scenarios should climate policy be based on? Modal falsificationism and its limitations. Philosophia Naturalis, 46(1), 133–158.CrossRefGoogle Scholar
  3. Betz, G. (2010). What’s the worst case? The methodology of possibilistic prediction. Analyse und Kritik, 32(1), 87–106.Google Scholar
  4. Carter, T., Perry, M., Harasawa, H., & Nishioka, S. (1994). IPCC technical guidelines for assessing climate change impacts and adaptations. University College London (London, UK), National Center for Environmental Studies (Tsukuba, Japan).Google Scholar
  5. de Donato Rodríguez, X., & Zamora Bonilla J.P. (2009). Credibility, idealisation, and model building: an inferential approach. Erkenntnis, 70(1), 101–118.CrossRefGoogle Scholar
  6. Deutsch, H. (1990). Real possibility. Noûs, 24(5), 751–755.CrossRefGoogle Scholar
  7. Fischedick, M., Schaeffer, R., Adedoyin, A., Akai, M., Bruckner, T., Clarke, L., Krey, V., et al. (2011). Mitigation potential and costs. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel et al. (Eds.), IPCC special report on renewable energy sources and climate change mitigation. New York: Cambridge University Press.Google Scholar
  8. Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., et al. (2013). Evaluation of climate models. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P.M. Midgley (Eds.), The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 741–866). Cambridge: Cambridge University Press.Google Scholar
  9. Frigg, R., Bradley, S., Machete, R.L., & Smith, L.A. (2013). Probabilistic forecasting: why model imperfection is a poison pill. In H. Andersen, D. Dieks, W.J. Gonzalez, T. Uebel, & G. Wheeler (Eds.), New challenges to philosophy of science. The philosophy of science in a European perspective (pp. 479-491). Dordrecht: Springer.Google Scholar
  10. Frigg, R., Smith, L.A., & Stainforth, D.A. (2014). The myopia of imperfect climate models: the case of UKCP09. Philosophy of Science, 80(5), 886–897.CrossRefGoogle Scholar
  11. Gibbs, B. (1970). Real possibility. American Philosophical Quarterly, 7(4), 340–348.Google Scholar
  12. Giere, R. N. (1988). Explaining science: a cognitive approach. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  13. Grüne-Yanoff, T. (2009). Learning from minimal economic models. Erkenntnis, 70(1), 81– 99.CrossRefGoogle Scholar
  14. Grüne-Yanoff, T. (2014). Appraising models nonrepresentationally. Philosophy of Science, 80(5), 850–861.CrossRefGoogle Scholar
  15. Hansson, S.O. (1997). The limits of precaution. Foundations of Science, 2(2), 293–306.CrossRefGoogle Scholar
  16. Hansson, S.O. (2011). Coping with the unpredictable effects of future technologies. Philosophy & Technology, 24(2), 137–149.CrossRefGoogle Scholar
  17. Hartshorne, C. (1963). Real possibility. The Journal of Philosophy, 60(21), 593–605.CrossRefGoogle Scholar
  18. Katzav, J. (2014). The epistemology of climate models and some of its implications for climate science and the philosophy of science. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 46(2), 228–238.CrossRefGoogle Scholar
  19. Katzav, J., Dijkstra, H.A., & de Laat, A.T.J. (2012). Assessing climate model projections: State of the art and philosophical reflections. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 43(4), 258–276.Google Scholar
  20. Kunreuther, H., Heal, G., Allen, M., Edenhofer, O., Field, C.B., & Yohe, G. (2013). Risk management and climate change. Nature Climate Change, 3(5), 447–450.CrossRefGoogle Scholar
  21. Lempert, R.J., Popper, S.W., & Bankes, S.C. (2002). Confronting surprise . Social Science Computer Review, 20(4), 420–440.CrossRefGoogle Scholar
  22. Lempert, R.J., Popper, S.W., & Bankes, S.C. (2003). Shaping the next one hundred years: new methods for quantitative, long-term policy analysis. Santa Monica: RAND.Google Scholar
  23. Levi, I. (1980). The enterprise of knowledge. An essay on knowledge, credal probability and chance. Cambridge, Mass.: MIT Press.Google Scholar
  24. Lloyd, E.A. (2010). Confirmation and robustness of climate models. Philosophy of Science, 77(5), 971–984.CrossRefGoogle Scholar
  25. Lorenzen, P. (1987). Lehrbuch der konstruktiven Wissenschaftstheorie. Mannheim, Wien, Zrich: BI-Wissenschaftsverlag.Google Scholar
  26. McInernery, D., Lempert, R., & Keller, K. (2012). What are robust strategies in the face of uncertain climate threshold responses? Climatic Change, 112(3–4), 547–568.CrossRefGoogle Scholar
  27. Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J., & Allen, M. R. (2009). Greenhouse-gas emission targets for limiting global warming to 2 degrees C. Nature, 458(7242), 1158–1162.CrossRefGoogle Scholar
  28. Meinshausen, M., Raper, S.C.B., & Wigley, T.M.L. (2011). Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6-Part 1: model description and calibration. Atmospheric Chemistry and Physics, 11(4), 1417–1456.CrossRefGoogle Scholar
  29. Parker, W.S. (2009). Confirmation and adequacy-for-purpose in climate modelling. Proceedings of the Aristotelian Society, 83(1), 233–249.Google Scholar
  30. Parker, W.S. (2010a). Predicting weather and climate: uncertainty, ensembles and probability. Studies in History and Philosophy of Modern Physics, 41(3), 263–272.CrossRefGoogle Scholar
  31. Parker, W.S. (2010b). Whose probabilities? Predicting climate change with ensembles of models. Philosophy of Science, 77(5), 985–997.CrossRefGoogle Scholar
  32. Schmidt, G., & Sherwood, S. (2015). A practical philosophy of complex climate modelling. European Journal for Philosophy of Science. Early on-line, doi:  10.1007/s13194-014-0102-9 .
  33. Shue, H. (2010). Deadly delays, saving opportunities: creating a more dangerous world? In S.M. Gardiner, D. Jamieson, H. Shue (Eds.), Climate ethics: essential readings (pp. 146–162). New York: Oxford University Press.Google Scholar
  34. Stainforth, D.A., Allen, M.R., Tredger, E.R., & Smith, L.A. (2007). Confidence, uncertainty and decision-support relevance in climate predictions. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 365(1857), 2145–2161.CrossRefGoogle Scholar
  35. Stainforth, D.A., & Smith, L.A. (2012). Clarify the limits of climate models. Nature, 489(7415), 208.CrossRefGoogle Scholar
  36. Steele, K. (2013). Interview with David Stainforth. The Reasoner, 7(2), 15–18.Google Scholar
  37. Strevens, M. (2008). Depth: an account of scientific explanation. Cambridge, Mass.: Harvard University Press.Google Scholar
  38. Sugden, R. (2009). Credible worlds, capacities and mechanisms. Erkenntnis, 70(1), 3–27.CrossRefGoogle Scholar
  39. Weisberg, M. (2007). Three kinds of idealization. The Journal of Philosophy, 104(12), 639–659.Google Scholar
  40. Winsberg, E. (2006). Models of success vs. the success of models: reliability without truth. Synthese, 152(1), 1–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology, Institute of PhilosophyKarlsruheGermany

Personalised recommendations