Overextension: the extended mind and arguments from evolutionary biology

Original paper in Philosophy of Biology

Abstract

I critically assess two widely cited evolutionary biological arguments for two versions of the ‘Extended Mind Thesis’ (EMT): namely, an argument appealing to Dawkins’s ‘Extended Phenotype Thesis’ (EPT) and an argument appealing to ‘Developmental Systems Theory’ (DST). Specifically, I argue that, firstly, appealing to the EPT is not useful for supporting the EMT (in either version), as it is structured and motivated too differently from the latter to be able to corroborate or elucidate it. Secondly, I extend and defend Rupert’s argument that DST also fails to support or elucidate the EMT (in either version) by showing that the considerations in favour of the former theory have no bearing on the truth of the latter. I conclude by noting that the relevance of this discussion goes beyond the debate surrounding the EMT, as it brings out some of the difficulties of introducing evolutionary biological considerations into debates in psychology and philosophy more generally.

Keywords

Extended cognition Extended phenotype Developmental Systems Theory 

Notes

Acknowledgments

I would like to thank Shannon Spaulding, Larry Shapiro, and an anonymous referee for very helpful comments on earlier drafts of this paper.

References

  1. Adams, F., & Aizawa, K. (2001). The bounds of cognition. Philosophical Psychology, 14, 43–64.CrossRefGoogle Scholar
  2. Adams, F., & Aizawa, K. (2008). The bounds of cognition. Oxford: Blackwell Publishing.Google Scholar
  3. Clark, A. (1997). Being there. Cambridge: MIT Press.Google Scholar
  4. Clark, A. (2001). Reason, robots, and the extended mind. Mind and Language, 16, 121–145.CrossRefGoogle Scholar
  5. Clark, A. (2007). Curing cognitive hiccups. Journal of Philosophy, 104, 163–192.Google Scholar
  6. Clark, A. (2008). Supersizing the mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
  7. Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58, 7–19.CrossRefGoogle Scholar
  8. Clark, A., & Wheeler, M. (1999). Genic Representation. The British Journal for the Philosophy of Science, 50, 103–135.CrossRefGoogle Scholar
  9. Damasio, A. (1994). Descartes’ error. New York: Grossett/Putnam.Google Scholar
  10. Dawkins, R. (1982). The extended phenotype. Oxford: Oxford University Press.Google Scholar
  11. Dawkins, R. (2004). extended phenotype – but not too extended: a reply to Laland, Turner, and Jablonka. Biology and Philosophy, 19, 377–396.CrossRefGoogle Scholar
  12. Fodor, J. (1983). The modularity of mind. Cambridge: MIT Press.Google Scholar
  13. Fodor, J. (2005). The mind doesn’t work this way. Cambridge: MIT Press.Google Scholar
  14. Gilbert, S., & Epel, D. (2009). Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sunderland: Sinauer Associates.Google Scholar
  15. Gissis, S., & Jablonka, E. (Eds.). (2011). Transformations of Lamarckism: From subtle fluids to molecular biology. Cambridge: MIT Press.Google Scholar
  16. Griffiths, A., Wessler, S., Lewontin, R., & Carrol, S. (2000). An introduction to genetic analysis (9th ed.). New York: Freeman.Google Scholar
  17. Griffiths, P., & Gray, R. (1994). Developmental systems and evolutionary explanation. The Journal of Philosophy, 91, 277–304.CrossRefGoogle Scholar
  18. Griffiths, P., & Gray, R. (2004). The developmental systems perspective: Organism-environment systems as units of evolution. In K. Preston & M. Pigliucci (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 409–431). Oxford: Oxford University Press.Google Scholar
  19. Griffiths, P., & Gray, R. (2005). Discussion: Three ways to misunderstand developmental systems. Biology and Philosophy, 20, 417–425.CrossRefGoogle Scholar
  20. Griffiths, P., & Stotz, K. (2000). How the mind grows. Synthese, 122, 29–51.CrossRefGoogle Scholar
  21. Hallgrimsson, B., & Hall, B. (Eds.). (2011). Epigenetics: Linking genotype and phenotype in development and evolution. Berkeley: University of California Press.Google Scholar
  22. Hesse, M. (1966). Models and analogies in science. Notre Dame: University of Notre Dame Press.Google Scholar
  23. Jablonka, E., & Lamb, M. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge: MIT Press.Google Scholar
  24. Jablonka, E., & Lamb, M. (2010). Transgenerational epigenetic inheritance. In M. Pigliucci & G. Muller (Eds.), Evolution – the extended synthesis (pp. 137–174). Cambridge: MIT Press.Google Scholar
  25. Lewontin, R. (1992). Genotype and Phenotype. In E. F. Keller & E. Lloyd (Eds.), Key terms in evolutionary biology (pp. 137–144). Cambridge: Harvard University Press.Google Scholar
  26. Maestripieri, D., & Mateo, J. (Eds.). (2009). Maternal effects in mammals. Chicago: The University of Chicago Press.Google Scholar
  27. Menary, R. (2007). Cognitive integration. New York: Palgrave Macmillan.CrossRefGoogle Scholar
  28. Neumann-Held, E. (1999). The gene is dead – long live the gene. In P. Koslowski (Ed.), Sociobiology and bioeconomics (pp. 105–138). Berlin: Springer.CrossRefGoogle Scholar
  29. Nijhout, H. F. (2001). The ontogeny of phenotypes. In S. Oyama, P. Griffiths, & R. Grey (Eds.), Cycles of contingency (pp. 129–140). Cambridge: MIT Press.Google Scholar
  30. Odling-Smee, J., Laland, K., & Feldman, M. (2003). Niche construction. Princeton: Princeton University Press.Google Scholar
  31. Oyama, S. (1985). The ontogeny of information. Cambridge: Cambridge University Press.Google Scholar
  32. Oyama, S. (2000). Evolution’s eye. Durgham: Duke University Press.Google Scholar
  33. Oyama, S., Griffiths, P., & Grey, R. (Eds.). (2001). Cycles of contingency: Developmental systems and evolution. Cambridge: MIT Press.Google Scholar
  34. Purugganan, M. (2010). Complexities in genome structure and evolution. In M. Pigliucci & G. Muller (Eds.), Evolution – the extended synthesis (pp. 117–134). Cambridge: MIT Press.Google Scholar
  35. Pylyshyn, Z. (1984). Computation and cognition. Cambridge: MIT Press.Google Scholar
  36. Richerson, P., & Boyd, R. (2005). Not by genes alone. Chicago: University of Chicago Press.Google Scholar
  37. Robert, J. S. (2004). Embryology, epigenesis, and evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Rosenberg, A. (2000). ‘What happens to genetics when holism runs amok?’. In Darwinism in philosophy, social science and policy. Cambridge: Cambridge University Press, pp. 97–117.Google Scholar
  39. Rowlands, M. (1999). The body in mind. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  40. Rupert, R. (2004). Challenges to the hypothesis of extended cognition. Journal of Philosophy, 101, 1–40.Google Scholar
  41. Rupert, R. (2009a). Cognitive systems and the extended mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
  42. Rupert, R. (2009b). Innateness and the situated mind. In P. Robbins & M. Aydede (Eds.), The Cambridge handbook of situated cognition (pp. 96–116). Cambridge: Cambridge University Press.Google Scholar
  43. Shapiro, L. (2004). The mind incarnate. Cambridge: MIT Press.Google Scholar
  44. Shapiro, L. (2010). Embodied cognition. London: Routledge.Google Scholar
  45. Shapiro, L. (2011). James Bond and the barking dog: evolution and extended cognition. Philosophy of Science, 77, 410–418.Google Scholar
  46. Sober, E., & Wilson, D. S. (1998). Unto others: The evolution and psychology of unselfish behavior. Cambridge: Harvard University Press.Google Scholar
  47. Sprevak, M. (2009). Extended cognition and functionalism. Journal of Philosophy, 106, 503–527.Google Scholar
  48. Sterelny, K. (2000). Roboroach: the extended phenotype meets cognitive science. Philosophy and Phenomenological Research, 61, 207–215.CrossRefGoogle Scholar
  49. Sterelny, K. (2003). Thought in a hostile world. Oxford: Blackwells.Google Scholar
  50. Sterelny, K. (2012). The evolved apprentice. Cambridge: MIT Press.Google Scholar
  51. Sterelny, K., & Griffiths, P. (1999). Sex and death. Chicago: University of Chicago Press.Google Scholar
  52. Sterelny, K., Smith, K., & Dickison, M. (2001). The extended replicator. In K. Sterelny (Ed.), The evolution of agency and other essays (pp. 53–80). Cambridge: Cambridge University Press.Google Scholar
  53. Stotz, K. (2006). Molecular epigenesis: distributed specificity as a break in the central dogma. History and Philosophy of the Life Sciences, 28, 527–544.Google Scholar
  54. Stotz, K. (2010). Human nature and cognitive–developmental niche construction. Phenomenology and Cognitive Science, 9, 483–501.CrossRefGoogle Scholar
  55. Stotz, K., & Allen, C. (2012). From cell-surface receptors to higher learning: A whole world of experience. In K. Plaisance & T. Reydon (Eds.), Philosophy of behavioral biology (pp. 85–123). Dordrecht: Springer.CrossRefGoogle Scholar
  56. Waters, C. K. (2007). Causes that make a difference. Journal of Philosophy, 104, 551–579.Google Scholar
  57. Wilson, R. (2004). Boundaries of the mind. Cambridge: Cambridge University Press.Google Scholar
  58. Wilson, R. (2005). Genes and the agents of life: The individual in the fragile sciences. Oxford: Oxford University Press.Google Scholar
  59. Wilson, R. (2010a). Meaning making and the mind of the externalist. In R. Menary (Ed.), The extended mind (pp. 167–188). Cambridge: MIT Press.Google Scholar
  60. Wilson, R. (2010b). Review of Robert Rupert’s ‘cognitive systems and the extended mind’. Notre Dame Philosophical Reviews.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Philosophy, Logic, and Scientific MethodLondon School of Economics and Political ScienceLondonUK

Personalised recommendations