Advertisement

European Journal for Philosophy of Science

, Volume 2, Issue 3, pp 395–434 | Cite as

How can computer simulations produce new knowledge?

  • Claus Beisbart
Original Paper in Philosophy of Science

Abstract

It is often claimed that scientists can obtain new knowledge about nature by running computer simulations. How is this possible? I answer this question by arguing that computer simulations are arguments. This view parallels Norton’s argument view about thought experiments. I show that computer simulations can be reconstructed as arguments that fully capture the epistemic power of the simulations. Assuming the extended mind hypothesis, I furthermore argue that running the computer simulation is to execute the reconstructing argument. I discuss some objections and reject the view that computer simulations produce knowledge because they are experiments. I conclude by comparing thought experiments and computer simulations, assuming that both are arguments.

Keywords

Computer simulations Knowledge Arguments Thought experiments Reasoning Extended mind hypothesis 

Notes

Acknowledgements

An earlier version of this paper was presented at the workshop “Thought experiments and Computer Simulations” at the IHPST, Paris in March 2010. I’m grateful to the organizers and the other participants. Special thanks to John Norton for discussion and encouragement.

References

  1. Atkinson, D., & Peijnenburg, J. (2004). Galileo and prior philosophy. Studies in History and Philosophy of Science, 35, 115–136.CrossRefGoogle Scholar
  2. Bailer-Jones, D. M. (2003). When scientic models represent. International Studies in the Philosophy of Science, 17, 59–75.CrossRefGoogle Scholar
  3. Balzer, W. (2009). Die Wissenschaft und ihre M ethoden (2nd ed.). Karl Alber, Freiburg und München.Google Scholar
  4. Barberousse, A., Franceschelli, S., & Imbert, C. (2009). Computer simulations as experiments. Synthese, 169, 557–574.CrossRefGoogle Scholar
  5. Bartuccelli, M. V., Gentile, G., & Georgiou, K. (2001). On the dynamics of a vertically-driven damped planar pendulum. Proceedings of the Royal Society of London, Series A, 457, 1–16.CrossRefGoogle Scholar
  6. Bertschinger, E. (1998). Simulations of structure formation in the universe. Annual Review of Astronomy and Astrophysics, 36, 599–654.CrossRefGoogle Scholar
  7. Bishop, M. A. (1999). Why thought experiments are not arguments. Philosophy of Science, 66, 543–541.CrossRefGoogle Scholar
  8. Brown, J. R., & Fehige, Y. (2010). Thought experiments. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (winter 2010 ed.).Google Scholar
  9. Brown, J. R. (1991). The laboratory of the mind: Thought experiments in the natural sciences. Routledge, London.Google Scholar
  10. Brown, J. R. (2004). Peeking into Plato’s haeven. Philosophy of Science, 71, 1126–1138.CrossRefGoogle Scholar
  11. Clark, A. (2007). Curing cognitive hiccups: A defense of the extended mind. Journal of Philosophy, 104, 163–192.Google Scholar
  12. Clark, A., & Chalmers, D. J. (1998). The extended mind. Analysis, 58(1), 7–19.CrossRefGoogle Scholar
  13. Cohnitz, D. (2006). Gedankenexperimente in der Philosophie. Mentis, Paderborn.Google Scholar
  14. Cooper, R. (2005). Thought experiments. Metaphilosophy, 3, 328–347.CrossRefGoogle Scholar
  15. Dolag, K., Borgani, S., Schindler, S., Diaferio, A., & Bykov, A. M. (2008). Simulation techniques for cosmological simulations. Space Science Reviews, 134, 229–268. Preprint under 0801.1023v1.
  16. Efstathiou, G., Davis, M., White, S. D. M., & Frenk, C. S. (1985). Numerical techniques for large cosmological N-body simulations. Astrophysical Journal Supplement Series, 57, 241–260.CrossRefGoogle Scholar
  17. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777–780.CrossRefGoogle Scholar
  18. Einstein, A. (1961). Relativity, the special and the g eneral theory. A popular e xposition. Methuen, London, 1920, here quoted after edition published by Crown, New York.Google Scholar
  19. Fine, A. (2009). The Einstein-Podolsky-Rosen argument in quantum theory. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2009 ed.). http://plato.stanford.edu/archives/fall2009/entries/qt-epr/.
  20. Frankfurt, H. G. (1978). The problem of action. American Philosophical Quarterly, 15, 157–62.Google Scholar
  21. Friedman, M. (1974). Explanation and scientific understanding. Journal of Philosophy, 71, 5–19.CrossRefGoogle Scholar
  22. Frigg, R. P., & Reiss, J. (2009). The philosophy of simulation: Hot new issues or same old stew? Synthese, 169, 593–613.CrossRefGoogle Scholar
  23. Frigg, R. P., Hartmann, S., & Imbert, C. (Eds.) (2009). Models and simulations. Special Issue. Synthese (Vol. 169, pp. 425–626).Google Scholar
  24. Frigg, R. P., Hartmann, S., & Imbert, C. (Eds.) (2011). Models and simulations 2. Special Issue. Synthese (Vol. 180, pp. 1–77).Google Scholar
  25. Galilei, G. (1933). Le Opere di G alileo Galilei. Florence: G. Barbèra.Google Scholar
  26. Galilei, G. (1974). Two new sciences. Translation by S. Drake. Madison (WI): University of Wisconsin Press.Google Scholar
  27. Galison, P. (1996). Computer simulations and the trading zone. In P. Galison & D. J. Stump (Eds.), The disunity of science. Boundaries, contexts, and power (pp. 118–157). Stanford: Stanford University Press.Google Scholar
  28. Galison, P. (1997). Image and logic. A materical culture of microphysics. Chicago: University of Chicago Press.Google Scholar
  29. Gendler, T. S. (1998). Galileo and the indispensability of scientific thought experiment. British Journal for the Philosophy of Science, 49, 397–424.CrossRefGoogle Scholar
  30. Gendler, T. S. (2000). Thought experiment. O n the powers and l imits of imaginary c ases. New York: Garland Publishing.Google Scholar
  31. Gendler, T. S. (2004). Thought experiments rethought and reperceived. Philosophy of Science, 71, 1152–1163.CrossRefGoogle Scholar
  32. Giere, R. N. (2004). How models are used to represent. Philosophy of Science, 71, 742–752.CrossRefGoogle Scholar
  33. Giere, R. N. (2009). Is computer simulation changing the face of experimentation? Philosophical Studies, 143(1), 59–62.CrossRefGoogle Scholar
  34. Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22, 403–434.CrossRefGoogle Scholar
  35. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81, 2340–2361.CrossRefGoogle Scholar
  36. Gramelsberger, G. (2010). Computerexperimente. Zum W andel der Wissenschaft im Z eitalter des Computers. Transcript, Bielefeld.Google Scholar
  37. Gramelsberger, G. (2011a). Generation of evidence in simulation runs: Interlinking with models for predicting weather and climate change. Simulation & Gaming, 42(2), 212–224.CrossRefGoogle Scholar
  38. Gramelsberger, G. (2011b). What do numerical (climate) models really represent?. Studies in History and Philosophy of Science, Part A 42, 296–302. Model-Based Representation in Scientific Practice.CrossRefGoogle Scholar
  39. Grice, P. (1989). Logic and conversation. In H. P. Grice (Ed.), Studies in the ways of w ords (pp. 1–143). Cambridge, MA: Harvard University Press.Google Scholar
  40. Grice, P. (2001). Aspects of reason. Oxford: Oxford University Press.CrossRefGoogle Scholar
  41. Grüne-Yanoff, T. (2009). The explanatory potential of artificial societies. Synthese, 169, 539–555.CrossRefGoogle Scholar
  42. Hartmann, S. (1996). The world as a process: Simulations in the natural and social sciences. In R. Hegselmann, K. G. Troitzsch, & U. Mueller (Eds.), Modelling and simulation in the social sciences from the philosophy of science point of view (pp. 77–100). Dordrecht: Kluwer. Quoted from the revised version at http://philsci-archive.pitt.edu/archive/00002412/.Google Scholar
  43. Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15, 135–175.CrossRefGoogle Scholar
  44. Hockney, R. W., & Eastwood, J. W. (1988). Computer simulation using particles (special student ed.). ed., Adam Hilger, Bristol etc.Google Scholar
  45. Humphreys, P. (1990). Computer simulations. In PSA: Proceedings of the biennial meeting of the philosophy of science association 1990 (pp. 497–506) (English).Google Scholar
  46. Humphreys, P. (2004). Extending ourselves: C omputational science, e mpiricism, and scientific m ethod. New York: Oxford University Press.Google Scholar
  47. Humphreys, P. (2009). The philosophical novelty of computer simulation methods, Synthese, 169, 615–626.CrossRefGoogle Scholar
  48. Irvine, A. D. (1991). Thought experiments in scientific reasoning. In: T. Horowitz & G. J. Massey (Eds.), Thought experiments in science and philosophy (pp. 149–165). Savage, MD: Rowman and Littlefield.Google Scholar
  49. Kitcher, P. (1981). Explanatory unification. Philosophy of Science, 48, 507–531.CrossRefGoogle Scholar
  50. Klypin, A. (2000). Numerical simulations in cosmology I: Methods. astro-ph/0005502.
  51. Kronsjö, L. (1979). Algorithms: Their c omplexity and efficiency. Chichester: Wiley.Google Scholar
  52. Kuhn, T. S. (1964). A function for thought experiments. In L’Aventure de la S cience, Mé langes Alexandre K oyré, Hermann, Paris (Vol. 2). (Reprinted in Kuhn, T. S., The Essential Tension: Selected Studies in Scientific Tradition and Change. Chicago: University of Chicago Press, 1977, pp. 240–265, 307–334).Google Scholar
  53. Kühne, U. (2005). Die Methode des G edankenexperiments. Suhrkamp, Frankfurt am Main.Google Scholar
  54. Küppers, G., & Lenhard, J. (2005a). Computersimulationen: Modellierungen 2. Ordnung. Journal for General Philosophy of Science, 36(2), 305–329.CrossRefGoogle Scholar
  55. Küppers, G., & Lenhard, J. (2005b). Validation of simulation: Patterns in the social and natural sciences. Journal of Artificial Societies and Social Simulation, 8(4), 3.Google Scholar
  56. Lenhard, J. (2007). Computer simulation: The cooperation between experimenting and modeling. Philosophy of Science, 74, 176–194.CrossRefGoogle Scholar
  57. Lenhard, J., & Winsberg, E. (2010). Holism, entrenchment, and the future of climate model pluralism. Studies in History and Philosophy of Science Part B, 41(3), 253–262.CrossRefGoogle Scholar
  58. Mach, E. (1926). Erkenntnis und Irrtum. S kizzen zur Psychologie der F orschung (5th ed.). Johann Ambrosius Barth, Leipzig (coincides with the 4th ed.).Google Scholar
  59. McAllister, J. (2004). Thought experiments and the belief in phenomena. Philosophy of Science, 71, 1164–1175.CrossRefGoogle Scholar
  60. Menary, R. (Ed.) (2010). The extended m ind. Cambridge, MA: MIT Press.Google Scholar
  61. Morrison, M. (2009). Models, measurement and computer simulation: The changing face of experimentation. Philosophical Studies, 143, 33–57.CrossRefGoogle Scholar
  62. Moue, A., Masavetas, K. A., & Karyianni, H. (2006). Tracing the development of thought experiments in the philosophy of natural sciences. Journal for General Philosophy of Science, 37, 61–75.CrossRefGoogle Scholar
  63. Norton, S. D., & Suppe, F. (2001). Why atmospheric modeling is good science. In P. Edwards & C. Miller (Eds.), Changing the atmosphere (pp. 67–106). Cambridge, MA: MIT Press.Google Scholar
  64. Norton, J. D. (1991). Thought experiments in Einstein’s work. In T. Horowitz & G. J. Massey (Eds.), Thought experiments in science and philosophy (pp. 129–144). Savage, MD: Rowman and Littlefield.Google Scholar
  65. Norton, J. D. (1996). Are thought experiments just what you thought? Canadian Journal of Philosophy, 26, 333–366.Google Scholar
  66. Norton, J. D. (2004a). On thought experiments: Is there more to the argument? Proceedings of the 2002 Biennial Meeting of the Philosophy of Science Association, Philosophy of Science, 71, 1139–1151.Google Scholar
  67. Norton, J. D. (2004b). Why thought experiments do not transcend empiricism. In C. Hitchcock (Ed.), Contemporary debates in the philosophy of science (pp. 44–66). Oxford: Blackwell.Google Scholar
  68. Oberkampf, W. L., & Roy, C. J. (2010). Verification and validation in scientific computing. Cambridge: Cambridge University Press.Google Scholar
  69. Pang, T. (2006). An introduction to computational physics (2nd ed.). Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  70. Parker, W. S. (2009). Does matter really matter? Computer simulations, experiments, and materiality. Synthese, 169(3), 483–496.CrossRefGoogle Scholar
  71. Peebles, P. J. E. (1980). The large scale structure of the universe. Princeton, NJ: Princeton University Press.Google Scholar
  72. Perret-Gallix, D. (2002). Simulation and event generation in high-energy physics. Computer Physics Communications, 147(1–2), 488–493.CrossRefGoogle Scholar
  73. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes. T he art of s cientific computing (3rd ed.), New York: Cambridge University Press.Google Scholar
  74. Russell, B. (1905). On denoting. Mind, 14, 479–493. (Reprinted in Russell, Bertrand, Essays in Analysis, London: Allen & Unwin, pp. 103–119 (1973))Google Scholar
  75. Salmon, W. (1989). Four decades of s cientific explanation. Minneapolis: University of Minnesota Press.Google Scholar
  76. Soter, S. (2007). Are planetary systems filled to capacity? Scientific American, 95(5), 424.Google Scholar
  77. Stöckler, M. (2000). On modeling and simulations as instruments for the study of complex systems. In M. Carrier, G. J. Massey, & L. Ruetsche (Eds.), Science at the century’s end: Philosophical questions on the progress and limits of science (pp. 355–373). Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
  78. Strawson, P. F. (1950). On referring. Mind, 59, 320–344.CrossRefGoogle Scholar
  79. Suárez, M. (2003). Scientific representation: Against similarity and isomorphism. International Studies in the Philosophy of Science, 17, 225–244.CrossRefGoogle Scholar
  80. Suárez, M. (2004). An inferential conception of scientific representation. Philosophy of Science, 71, 767–779.CrossRefGoogle Scholar
  81. Tymoczko, T. (1979). The four-color problem and its philosophical significance. Journal of Philosophy, 76, 57–83.CrossRefGoogle Scholar
  82. Weber, K. (1999). Simulation und Erklärung. Waxmann, Münster.Google Scholar
  83. Wedgwood, R. (2006). The normative force of reasoning. Noũs, 40, 660–686.Google Scholar
  84. Weisberg, M. (2007). Who is a modeler? British Journal for Philosophy of Science, 58, 207–233.CrossRefGoogle Scholar
  85. Winsberg, E. (1999). Sanctioning models. The Epistemology of Simulation. Science in Context, 12, 275–292.CrossRefGoogle Scholar
  86. Winsberg, E. (2001). Simulations, models, and theories: Complex physical systems and their representations. Philosophy of Science (Proceedings), 68, 442–454.Google Scholar
  87. Winsberg, E. (2010). Science in the age of computer simulations. Chicago: University of Chicago Press.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute for Philosophy and Political ScienceDortmundGermany

Personalised recommendations