European Journal for Philosophy of Science

, Volume 2, Issue 3, pp 249–274 | Cite as

Defending the Semantic View: what it takes

Original paper in Philosophy of Science

Abstract

In this paper, a modest version of the Semantic View is motivated as both tenable and potentially fruitful for philosophy of science. An analysis is proposed in which the Semantic View is characterized by three main claims. For each of these claims, a distinction is made between stronger and more modest interpretations. It is argued that the criticisms recently leveled against the Semantic View hold only under the stronger interpretations of these claims. However, if one only commits to the modest interpretation for all the claims, then the view obtained, the Modest Semantic View, is tenable and fruitful for the philosophy of science.

Keywords

Models Semantic View Scientific theories Scientific models Structure Structuralism 

References

  1. Balzer, W. (1978). Empirische geometrie und Raum–Zeit–Theorie in mengentheoretischer Darstellung. Kronberg: Scriptor.Google Scholar
  2. Balzer, W. (1982). Empirische theorien: Modelle, strukturen, beispiele. Braunschweig: Vieweg.Google Scholar
  3. Balzer, W. (1985). Theorie und messung. Berlin: Springer.CrossRefGoogle Scholar
  4. Balzer, W., Ulises Moulines, C., & Sneed, J. D. (1987). An architectonic for science: The structuralist program. Dordrecht: Reidel.CrossRefGoogle Scholar
  5. Balzer, W., Ulises Moulines, C., & Sneed, J. (Eds.) (2000). Structuralist knowledge representation: Paradigmatic examples. Amsterdam: Rodopi.Google Scholar
  6. Bickle, J. (2002). Concepts structured through reduction: A structuralist resource illuminates the consolidation-long-term potentiation (LTP). Synthese, 130(1), 123–133.CrossRefGoogle Scholar
  7. Bourbaki, N. (pseud.) (1954). Eléments de mathematiques: Theorie des ensembles. Paris: Herman.Google Scholar
  8. Brading, K., & Landry, E. M. (2006). Scientific structuralism: Presentation and representation. Philosophy of Science, 73, 571–581.CrossRefGoogle Scholar
  9. Bueno, O. (1997). Empirical adequacy: A partial structures account. Studies in History and Philosophy of Science, 28, 585–610.CrossRefGoogle Scholar
  10. Bueno, O., French, S., & Ladyman, J. (2002). On representing the relationships between the mathematical and the empirical. Philosophy of Science, 69, 497–518.CrossRefGoogle Scholar
  11. Caamaño, M. (2009). A structural analysis of the Phlogiston case. Erkenntnis, 70, 331–364.CrossRefGoogle Scholar
  12. Carnap, R. (1966). Philosophical foundations of physics. New York: Macmillan.Google Scholar
  13. Cartwright, N. D. (1983). How the laws of physics lie. Oxford: Oxford University Press.CrossRefGoogle Scholar
  14. Cartwright, N. D. (1989). Nature’s capacities and their measurement. Oxford: Oxford University Press.Google Scholar
  15. Cartwright, N. D. (1999). Models and the limits of theory: Quantum Hamiltonians and the BCS model of superconductivity. In M. S. Morgan, & M. Morrison (Eds.), Models as mediators (pp. 241–281). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Cartwright, N. D., Shomar, T., & Suárez, M. (1995). The tool box of science: Tools for the building of models with a superconductivity example. In W. E. Herfel, W. Krajewski, I. Niiniluoto, & R. Wojcicki (Eds.), Theories and models in science: Poznan studies in the philosophy of the sciences and the humanities (vol. 44, pp. 137–149). Amsterdam: Rodopi.Google Scholar
  17. da Costa, N. C. A., & French, S. (2003). Science and partial truth: A unitary approach to models and scientific reasoning. Oxford: Oxford University Press.Google Scholar
  18. Downes, S. M. (1992). The importance of models in theorizing: A deflationary Semantic View. PSA 1992, 1, 142–153.Google Scholar
  19. Ereshefsky, M. (1991). The semantic approach to evolutionary theory. Biology and Philosophy, 5, 7–28.Google Scholar
  20. French, S., & Ladyman, J. (1999). Reinflating the semantic approach. International Studies in the Philosophy of Science, 13(2): 103–121.CrossRefGoogle Scholar
  21. Friedman, M. (1982). Review of the scientific image. Journal of Philosophy, 79(5), 274–283.CrossRefGoogle Scholar
  22. Friedman, M. (1999). Reconsidering logical positivism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Frigg, R. (2006). Scientific representation and the Semantic View of theories. Theoria, 55, 49–65.Google Scholar
  24. Frigg, R., & Hartman, S. (2006). Models in science. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. http://plato.stanford.edu/archives/spr2006/entries/models-science/.
  25. Gähde, U. (2002). Holism, underdetermination, and the dynamics of empirical theories. Synthese, 130(1), 69–90.CrossRefGoogle Scholar
  26. Gamut, L. T. F. (1990). Logic, language and meaning: Introduction to logic. Chicago: University of Chicago Press.Google Scholar
  27. Giere, R. (1979). Understanding scientific reasoning. New York: Holt, Rinehart and Winston.Google Scholar
  28. Giere, R. (1988). Explaining science. Chicago: University of Chicago Press.Google Scholar
  29. Giere, R. (1999). Science without laws. Chicago: University of Chicago Press.Google Scholar
  30. Hempel, C. (1963). Implications of Carnap’s work for the philosophy of science. In P. A. Schilpp (Ed.), The philosophy of Rudolf Carnap (pp. 685–709). LaSalle: Open Court.Google Scholar
  31. Krause, D., & Bueno, O. (2008). Scientific theories, models, and the semantic approach. Preprint: http://philsci-archive.pitt.edu/archive/00003958/. Forthcoming in Principia.
  32. Ladyman, J., & Ross, D. (with Spurrett, D. and Collier, J.) (2007). Every thing must go: Metaphysics naturalised. Oxford: Oxford University Press.Google Scholar
  33. Löwenheim, L. (1915). Über Möglichkeiten im Relativkalkül”. Mathematische Annalen, 76, 447–470. Eng. transl.: On possibilities in the calculus of relatives. In J. van Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic, 1879–1931 (pp. 228–251). Cambridge: Harvard University Press.Google Scholar
  34. Lloyd, E. A. (1994) [1988]. The structure and confirmation of evolutionary theory. Princeton: Princeton University Press.Google Scholar
  35. Lutz, S. (2010). On a straw man in the philosophy of science—a defense of the received view. Paper presented at the British Society for the Philosophy of Science Annual Conference 2010 (Dublin; 8–9 July 2010). Available in a draft version at http://philsci-archive.pitt.edu/5497/.
  36. Maudlin, T. (2007). The metaphysics within physics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  37. McMullin, E. (1985). Galilean idealization. Studies in History and Philosophy of Science, 16, 247–273.CrossRefGoogle Scholar
  38. Morgan, M. S., & Morrison, M. (1999). Models as mediators. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  39. Morrison, M. (1999). Models as autonomous agents. In M. S. Morgan, & M. Morrison (Eds.), Models as mediators (pp. 38–65). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  40. Morrison, M. (2007). Where have all the theories gone? Philosophy of Science, 74, 195–228.CrossRefGoogle Scholar
  41. Moulines, C. U. (1975a). Zur logischen Rekonstruktion der Thermodynamik. Eine wissenschafts-theoretische Analyse. Tesis doctoral, Universidad de Munich, Munich.Google Scholar
  42. Moulines, C. U. (1975b). A logical reconstruction of simple equilibrium thermodynamics. Erkenntnis, 9, 101–130.CrossRefGoogle Scholar
  43. Moulines, C. U. (1982). Exploraciones metacient’ficas. Madrid: Alianza.Google Scholar
  44. Moulines, C. U. (1991). Pluralidad y recursión. Madrid: Alianza.Google Scholar
  45. Moulines, C. U. (2002). Structuralism as a program for modelling theoretical science. Synthese (Structuralism), 130(1), 1–11.CrossRefGoogle Scholar
  46. Moulines, C. U., & Sneed, J. (1979). Suppes’ philosophy of physics. In R. J. Bogdan (Ed.), Patrick Suppes (pp. 59–91). Dortrecht: Reidel.CrossRefGoogle Scholar
  47. Niegergall, K.-G. (2002). Structuralism, model theory and reduction. Synthese, 130(1), 135–162.CrossRefGoogle Scholar
  48. Parrini, P., Salmon, M., & Salmon, W. C. (Eds.) (2003). Logical empiricism: Historical and contemporary perspectives. Pittsburgh: University of Pittsburgh Press.Google Scholar
  49. Poincaré, H. (1952) [1905]. Science and hypothesis. New York: Dover. Translated by G. B. Halsted (1905). Reprinted (1958).Google Scholar
  50. Poincaré, H. (1958) [1906] [1914]. The value of science. New York: Dover. Translated by G. B. Halsted (1914). Reprinted (1958).Google Scholar
  51. Putnam, H. (1962) [1979]. What theories are not. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology and philosophy of science. Proceedings of the 1960 international congress. Stanford: Stanford University Press. Reprinted in H. Putnam (1979). Mathematics, matter and method: Philosophical papers (vol. 1, pp. 215–227). Cambridge: Cambridge University Press.Google Scholar
  52. Redhead, M. (1980). Models in physics. British Journal for Philosophy of Science, 31, 145–163.CrossRefGoogle Scholar
  53. Schmidt, H.-J. (2008). Structuralism in physics. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2008 ed.). http://plato.stanford.edu/archives/fall2008/entries/physics-structuralism/.
  54. Sneed, J. D. (1971). The logical structure of mathematical physics. Dordrecht: Reidel.CrossRefGoogle Scholar
  55. Stegmüller, W. (1976). The structure and dynamics of theories. New York: Springer.Google Scholar
  56. Stegmüller, W. (1979a). The structuralist view: Survey, recent developments and answers to some criticisms. In I. Niiniluoto, & R. Tuomela (Eds.), The logic and epistemology of scientific change. Amsterdam: North Holland.Google Scholar
  57. Stegmüller, W. (1979b). The structuralist view of theories. New York: Springer.CrossRefGoogle Scholar
  58. Stegmüller, W. (1986). Die Entwicklung des neuen Strukturalismus seit 1973. Berlin: Springer.Google Scholar
  59. Suárez, M. (1999). The role of models in the application of scientific theories: Epistemological implications. In M. S. Morgan, & M. Morrison (Eds.), Models as mediators (pp. 168–195). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  60. Suárez, M. (2003). Scientific representation: Against similarity and isomorphism. International Studies in Philosophy of Science, 17, 225–244.CrossRefGoogle Scholar
  61. Suárez, M., & Cartwright, N. (2008). Theories: Tools versus models, Studies in History and Philosophy of Modern Physics, 39(1), 62–81.CrossRefGoogle Scholar
  62. Suppe, F. (1974). Some philosophical problems in biological speciation and taxonomy. In J. A. Wojcieckowski (Ed.) (1974). Conceptual basis of the classification of knowledge (pp. 190–243). Munich: Verlag Dokumentation.Google Scholar
  63. Suppe, F. (1977). The search for philosophical understanding of scientific theories. In F. Suppe (Ed.) (1977b). The structure of scientific theories (pp. 3–232). Champain: University of Illinois Press.Google Scholar
  64. Suppe, F. (1979). Theory structure. In Current research in philosophy of science (pp. 317–338). East Leansing: Philosophy of Science Association.Google Scholar
  65. Suppe, F. (1989). The semantic conception of theories and scientific realism. Urbana: University of Illinois Press.Google Scholar
  66. Suppes, P. (1960). A comparison of the meaning and uses of models in mathematics and the empirical sciences. Synthese, 12, 287–301. Reprinted in Suppes (1969), pp. 10–23.CrossRefGoogle Scholar
  67. Suppes, P. (1962). Models of data. In E. Nagel, P. Suppes, & Tarski, A. (Eds.), Logic, methodology and philosophy of science. Proceedings of the 1960 international congress. Stanford: Stanford University Press. Reprinted in P. Suppes (1969). Studies in the methodology and foundations of science: Selected papers from 1951 to 1969 (pp. 24–35). Dordrecht: Reidel.Google Scholar
  68. Suppes, P. (1967). What is a scientific theory? In S. Morgenbesser (Ed.), Philosophy of science today (pp. 55–67). New York: Basic Books.Google Scholar
  69. Suppes, P. (1969). Studies in the methodology and foundations of science: Selected papers from 1951 to 1969. Dordrecht: Reidel.Google Scholar
  70. Suppes, P. (1994). Answer to Wójcicki. In P. Humphreys (Ed.), Patrick Suppes: Scientific philosopher, II, theory, structure and measurement theory. Dordrecht: Kluwer Academic.Google Scholar
  71. Suppes, P. (2002). Representation and invariance of scientific structures, CSLI lecture notes. Stanford: Center for the Study of Language and Information.Google Scholar
  72. Tarski, A. (1933). The concept of truth in the languages of the deductive sciences. Expanded English translation in J. Corcoran (Ed.) (1983). Tarski: Logic, semantics, metamathematics, papers from 1923 to 1938 (pp. 152–278). Indianapolis: Hackett Publishing Company.Google Scholar
  73. Thomson-Jones, M. (2006). Models and the Semantic View. Philosophy of Science, 73, 524–535.CrossRefGoogle Scholar
  74. van Fraassen, B. C. (1972). A formal approach to the philosophy of science. In R. G. Colodny (Ed.), Paradigms and paradoxes: The philosophical challenge of the quantum domain. Pittsburgh: Pittsburgh University Press.Google Scholar
  75. van Fraassen, B. C. (1980). Scientific image, Oxford: Clarendon Press.CrossRefGoogle Scholar
  76. van Fraassen, B. C. (1985). Empiricism in the philosophy of science. In P. M. Churchland, & C. A. Hooker (Eds.), Images of science: Essays on realism and empiricism, with a reply from Bas C. van Fraassen (pp. 245–308). Chicago: University of Chicago Press.Google Scholar
  77. van Fraassen, B. C. (1989). Laws and symmetry. Oxford: Clarendon Press.CrossRefGoogle Scholar
  78. van Fraassen, B. C. (1991). Quantum mechanics, an empiricist view. Oxford: Oxford University Press.Google Scholar
  79. van Fraassen, B. C. (2006). Representation: The problem for structuralism. Philosophy of Science, 73, 536–547.CrossRefGoogle Scholar
  80. van Fraassen, B. C. (2008). Scientific representation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  81. Worrall, J. (1984). An unreal image. The British Journal of Philosophy of Science, 35(1), 65–80.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Philosophy LA 101University of MontanaMissoulaUSA

Personalised recommendations