The Journal of Indian Prosthodontic Society

, Volume 14, Issue 2, pp 131–143 | Cite as

Heat Generated by Dental Implant Drills During Osteotomy—A Review

Heat Generated by Dental Implant Drills
  • Sunil Kumar Mishra
  • Ramesh Chowdhary
Review Article


Statement of problem: Osseointegration is the more stable situation and results in a high success rate of dental implants. Heat generation during rotary cutting is one of the important factors influencing the development of osseointegration. Purpose: To assess the various factors related to implant drills responsible for heat generation during osteotomy. Materials and Methods: To identify suitable literature, an electronic search was performed using Medline and Pubmed database. Articles published in between 1960 to February 2013 were searched. The search is focused on heat generated by dental implant drills during osteotomy. Various factors related to implant drill such effect of number of blades; drill design, drill fatigue, drill speed and force applied during osteotomies which were responsible for heat generation were reviewed. Titles and abstracts were screened, and literature that fulfilled the inclusion criteria was selected for a full-text reading. Results: The initial literature search resulted in 299 articles out of which only 70 articles fulfils the inclusion criteria and were included in this systematic review. Many factors related to implant drill responsible for heat generation were found. Successful preparation of an implant cavity with minimal damage to the surrounding bone depends on the avoidance of excessive temperature generation during surgical drilling. Conclusion: The relationship between heat generated and implant drilling osteotomy is multifactorial in nature and its complexity has not been fully studied. Lack of scientific knowledge regarding this issue still exists. Further studies should be conducted to determine the various factors which generate less heat while osteotomy such as ideal ratio of force and speed in vivo, exact time to replace a drill, ideal drill design, irrigation system, drill-bone contact area.


Dental implants osteotomy Heat generation Drill cooling Implant drill design Surface contact area 


  1. 1.
    Brånemark P-I (1985) Introduction to osseointegration. In: Brånemark P-I, Zarb GA, Albrektsson T (eds) Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence, Chicago, pp 11–76Google Scholar
  2. 2.
    Adell R, Lekholm U, Rockler R et al (1981) A 15 year old study of osseointegrated implant in the treatment of the edentulous jaw. Int J Oral Surg 10:387–416PubMedCrossRefGoogle Scholar
  3. 3.
    Marco F, Milena F, Gianluca G, Vittoria O (2005) Peri-implant osteogenesis in health and osteoporosis. Micron 36:630–644PubMedCrossRefGoogle Scholar
  4. 4.
    Linder L, Obrant K, Boivin G (1989) Osseointegration of metallic implants II. Transmission electron microscopy in rabbits. Acta Orthop Scand 60:135–139PubMedCrossRefGoogle Scholar
  5. 5.
    Soballe K (1993) Hydroxyapatite coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand 255:1–58CrossRefGoogle Scholar
  6. 6.
    Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM (2005) The biology of bone grafting. J Am Acad Orthop Surg 13:77–86PubMedGoogle Scholar
  7. 7.
    Eberhardt C, Habermann B, Muller S, Schwarz M, Bauss F, Kurth AH (2007) The bisphosphonate ibandronate accelerates osseointegration of hydroxyapatite coated cementless implants in an animal model. J Orthop Sci 12:61–66PubMedCrossRefGoogle Scholar
  8. 8.
    Watanbe F, Tawada Y, Komatsu S, Hata Y (1992) Heat distribution in bone during preparation of implant sites: heat analysis by real-time thermography. Int J Oral Maxillofac Implants 7:212–219Google Scholar
  9. 9.
    Watzek G, Matejka M, Grundschober F, Plenk H Jr (1985) Enossale Implantate. Theoretische und morphologische Grundlagen — klinische Konsequenzen. Z Stomatol 82:27–49Google Scholar
  10. 10.
    Brånemark P-I (1983) Osseointegration and its experimental background. J Prosthet Dent 50:399–410PubMedCrossRefGoogle Scholar
  11. 11.
    Watzek G, Matejka M, Lill W, Mailath G, Matzka P, Plenk H Jr (1988) Knöchern eingeheilte Implantate (Tübingen, IMZ, Brånemark) — Erfahrungen mit einem Therapiekonzept. Z Stomatol 85:207–233PubMedGoogle Scholar
  12. 12.
    Eriksson R, Albrektsson T (1983) Temperature threshold levels for heat induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Den 50:101–107CrossRefGoogle Scholar
  13. 13.
    Eriksson RA, Albrektsson T (1984) The effect of heat on bone regeneration: an experimental study in rabbits using the bone growth chamber. J Oral Maxillofac Surg 42:705–711PubMedCrossRefGoogle Scholar
  14. 14.
    Ercoli C, Funkenbusch PD, Lee H-J et al (2004) The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability. Int J Oral Maxillofac Implants 19:335–349PubMedGoogle Scholar
  15. 15.
    Albrektsson T (1985) Bone tissue response. In: Brånemark P-I, Zarb GA, Albrektsson T (eds) Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence, Chicago, pp 129–143Google Scholar
  16. 16.
    Tehemar SH (1999) Factors affecting heat generation during implant site preparation: a review of biologic observations and future considerations. Int J Oral Maxillofac Implants 14:127–136PubMedGoogle Scholar
  17. 17.
    Lavelle C, Wedgewood D (1980) Effect of internal irrigation on frictional heat generated from bone drilling. J Oral Surg 38:499–503PubMedGoogle Scholar
  18. 18.
    Rafel SS (1962) Temperature changes during high-speed drilling on bone. J Oral Surg Anesth Hosp Dent Serv 20:475PubMedGoogle Scholar
  19. 19.
    Matthews LS, Hirsch C (1972) Temperatures measured in human cortical bone when drilling. J Bone Joint Surg Am 54:297–308PubMedGoogle Scholar
  20. 20.
    Yacker M, Klein M (1996) The effect of irrigation on osteotomy: depth and bur diameter. Int J Oral Maxillofac Implants 11:634–638PubMedGoogle Scholar
  21. 21.
    Cordioli G, Majzoub Z (1997) Heat generation during implant site preparation: an in vitro study. Int J Oral Maxillofac Implantol 12:186–193Google Scholar
  22. 22.
    Chacon GE, Bower DL, Larsen PE, McGlumphy EA, Beck FM (2006) Heat production by 3 implant drill systems after repeated drilling and sterilization. J Oral Maxillofac Surg 64:265–269PubMedCrossRefGoogle Scholar
  23. 23.
    de Souza Carvalho ACG, Queiroz TP, Okamoto R, Margonar R, Garcia IR, Filho OM (2011) Evaluation of bone heating, immediate bone cell viability, and wear of high-resistance drills after the creation of implant osteotomies in rabbit tibias. Int J Oral Maxillofac Implants 26:1193–1201Google Scholar
  24. 24.
    Sharawy M, Misch C, Weller N, Tehemar S (2002) Heat generation during implant drilling: the significance of motor speed. J Oral Maxillofac Surg 60:1160–1169PubMedCrossRefGoogle Scholar
  25. 25.
    Haider R, Watzek G, Plenk H (1993) Effects of drill cooling and bone structure on imz implant fixation. Int J Oral Maxillofac Implants 8:83–91PubMedGoogle Scholar
  26. 26.
    Brisman D (1996) The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. Int J Oral Maxillofac Implants 11:35–37PubMedGoogle Scholar
  27. 27.
    Allsobrook OFL, Leichter J, Holborow D, Swain M (2011) Descriptive study of the longevity of dental implant surgery drills. Clin Implant Dent Relat Res 13(3):244–254PubMedCrossRefGoogle Scholar
  28. 28.
    Harris B, Kohles S (2001) Effects of mechanical and thermal fatigue on dental drill performance. Int J Oral Maxillofac Implants 16:819–826PubMedGoogle Scholar
  29. 29.
    Jun OhH, Wikesjo UM, Kang HS, Ku Y, Eom TG, Koo KT (2011) Effect of implant drill characteristics on heat generation in osteotomy sites: a pilot study. Clin Oral Implants Res 22:722–726CrossRefGoogle Scholar
  30. 30.
    Sener BC, Dergin G, Gursoy B, Kelesoglu E, Slih I (2009) Effects of irrigation temperature on heat control in vitro at different drilling depths. Clin Oral Implant Res 20:294–298CrossRefGoogle Scholar
  31. 31.
    Benington IC, Biagioni PA, Briggs J, Sheridan S, Lamey PJ (2002) Thermal changes observed at implant sites during internal and external irrigation. Clin Oral Implant Res 13:293–297CrossRefGoogle Scholar
  32. 32.
    Sumer M, Misir AF, Telcioglu NT, Guler AU, Yenisey M (2011) Comparison of heat generation during implant drilling using stainless steel and ceramic drills. J Oral Maxillofac Surg 69(5):1350–1354PubMedCrossRefGoogle Scholar
  33. 33.
    Misir AF, Sumer M, Yenisey M, Ergioglu E (2009) Effect of surgical drill guide on heat generated from implant drilling. J Oral Maxillofac Surg 67(12):2663–2668PubMedCrossRefGoogle Scholar
  34. 34.
    Watanabe F, Tawada Y, Komatsu S, Hata Y (1990) Heat distribution within the bonetissue by rotary cutting instrument for IMZ implant. Heat analysis by a real-time thermography. Nihon Hotetsu Shika Gakkai Zasshi 34(1):18–24PubMedCrossRefGoogle Scholar
  35. 35.
    Iyer S, Weiss C, Mehta A (1997) Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies. Part I: relationship between drill speed and heat production. Int J Prostbodont 10:411–414Google Scholar
  36. 36.
    Iyer S, Weiss C, Mehta A (1997) Effects of drill speed on heat production and the rate and quality of bone formation in dental osteotomies. Part II: relationship between drill speed and healing. Int J Prosthodont 10:411–414PubMedGoogle Scholar
  37. 37.
    Kohles SS, Bowers JR, Vailas AC, Vanderby R Jr (1997) Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens. J Biomech Eng 119:232–236PubMedCrossRefGoogle Scholar
  38. 38.
    Johnson AT (1998) Biological process engineering: an analogical approach to fluid flow, heat transfer, and mass transfer applied to biological systems. Wiley, New York, pp 262–493Google Scholar
  39. 39.
    Lundskog J (1972) Heat and bone tissue. An experimental investigation of the thermal properties of bone tissue and threshold levels for thermal injury. Scand J Plast Reconstr Surg 6(suppl 9):5–75Google Scholar
  40. 40.
    Eichler J, Berg R (1972) Temperatureinwirkung auf die Kompakta beim Bohren, Gewindeschneiden und Eindrehen von Schrauben. Z Orthop 110:909–913PubMedGoogle Scholar
  41. 41.
    Rhinelander FW (1974) The normal circulation of bone and its response to surgical intervention. J Biomed Mater Res 8:87–90PubMedCrossRefGoogle Scholar
  42. 42.
    Tetsch P (1974) Development of raised temperature after osteotomies. J Maxillofac Surg 2:141–145PubMedCrossRefGoogle Scholar
  43. 43.
    Huiskes R (1980) Some fundamental aspects of human joint replacement. Analyses of stresses and heat conduction in bone-prosthesis structures. Acta Orthop Scand 185:1–208Google Scholar
  44. 44.
    Roberts WE, Turley PK, Brezniak N, Fielder PJ (1987) Bone physiology and metabolism. CDA J 10:54–61Google Scholar
  45. 45.
    Eriksson A, Albrektsson T, Grane B, McQueen D (1982) Thermal injury to bone: a vital-microscopic description of heat effects. Int J Oral Surg 11:115–121PubMedCrossRefGoogle Scholar
  46. 46.
    Eriksson RA, Albrektsson T, Magnusson B (1984) Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 18:261–268PubMedCrossRefGoogle Scholar
  47. 47.
    Albrektsson T, Eriksson A (1985) Thermally induced bone necrosis in rabbits: relation to implant failure in humans. Clin Orthop 195:311–312PubMedCrossRefGoogle Scholar
  48. 48.
    Truhlar RS, Morris HF, Ochi S et al (1994) Second stage failures related to bone quality in patients receiving endosseous dental implants: DICRG Interim report #7. Implant Dent 3:252–255PubMedCrossRefGoogle Scholar
  49. 49.
    Mann V, Huber C, Kogianni G et al (2006) The influence of mechanical stimulation on osteocyte apoptosis and bone viability in human trabecular bone. J Musculoskelet Neuronal Interact 6:408–417PubMedCentralPubMedGoogle Scholar
  50. 50.
    Nomura S, Takano-Yamamoto T (2000) Molecular events caused by mechanical stress in bone. Matrix Biol 19:91–96PubMedCrossRefGoogle Scholar
  51. 51.
    Takai E, Mauck RL, Hung CT et al (2004) Osteocyte viability and regulation of osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure. J Bone Miner Res 19:1403–1410PubMedCrossRefGoogle Scholar
  52. 52.
    Ocarino NM, Gomes MG, Melo EG (2006) Técnica histoquímica aplicada ao tecido ósseodesmineralizado e parafinado para o estudo do osteócito e suas conexões. J Bras Patol Med Lab 42:37–42CrossRefGoogle Scholar
  53. 53.
    Bonewald LF (2002) Osteocytes: a proposed multifunctional bone cell. J Musculoskelet Neuronal Interact 2:239–241PubMedGoogle Scholar
  54. 54.
    Nagai M, Hayakawa T, Fukatsu A et al (2002) In vitro study of collagen coating of titanium implants for initial cell attachment. Dent Mater J 21:250–260PubMedCrossRefGoogle Scholar
  55. 55.
    Rammelt S, Schulze E, Bernhardt R et al (2004) Coating of titanium implants with type I collagen. J Orthop Res 22:1025–1034PubMedCrossRefGoogle Scholar
  56. 56.
    Woo KM, Choi Y, Ko S-H et al (2002) Osteoprotegerin is present on the membrane of osteoclasts isolated from mouse long bones. Exp Mol Med 34:347–352PubMedCrossRefGoogle Scholar
  57. 57.
    Crotti TN, Smith MD, Findlay DM et al (2004) Factors regulating osteoclast formation in human tissues adjacent to peri-implant bone loss: expression of receptor activator NFKappaB, RANK ligand and osteoprotegerin. Biomaterials 25:565–573PubMedCrossRefGoogle Scholar
  58. 58.
    Bucay N, Sarosi I, Dunstan CR et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Khosla S (2001) Mini review: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055PubMedCrossRefGoogle Scholar
  60. 60.
    Rogers A, Eastell R (2005) Review: circulating osteoprotegerin and receptor activator for nuclear factor kB ligant: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 90:6323–6331PubMedCrossRefGoogle Scholar
  61. 61.
    Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 84:1032–1044PubMedGoogle Scholar
  62. 62.
    Thorwarth M, Rupprecht S, Falk S et al (2005) Expression of bone matrix proteins during de novo bone formation using a bovine collagen and platelet-rich plasma (prp)—an immunohistochemical analysis. Biomaterials 26:2575–2584PubMedCrossRefGoogle Scholar
  63. 63.
    Rammelt S, Neumann M, Hanisch U et al (2005) Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J Biomed Mater Res 73:284–294CrossRefGoogle Scholar
  64. 64.
    Lekholm U (1983) Clinical procedures for treatment with osseointegrated dental implants. J Prosthet Dent 50:116–120PubMedCrossRefGoogle Scholar
  65. 65.
    Kirschner H, Meyer W (1975) Entwicklung einer Innenkühlung für chirurgische Bohrer. Dtsch Zahnärztl Z 30:436–438PubMedGoogle Scholar
  66. 66.
    Seeger P, Tetsch P (1978) Tierexperimentelle Untersuchungen zur Regeneration genormter Knochendefekte bei unterschiedlichen Kühlverfahren. Dtsch Zahnärztl Z 33:870–872PubMedGoogle Scholar
  67. 67.
    Schmitt W, Weber HJ, Jahn D (1988) Thermische Untersuchungen beim Bohren in kortikalem Knochen unter Verwendung verschiedener Kühlsysteme. Dtsch Zähnarztl Z 43:802–805PubMedGoogle Scholar
  68. 68.
    Kirschner H, Bolz U, Michel G (1984) Thermometrische Untersuchungen mit innen- und ungekühlten Bohrern an Kieferknochen und Zähnen. Dtsch Zahnärztl Z 39:30–32PubMedGoogle Scholar
  69. 69.
    Oberg E, Jones FD, Horton HL (1989) Machinery’s handbook, 23rd edn. Industrial, New York, pp 716–729Google Scholar
  70. 70.
    Thompson HC (1958) Effect of drilling into bone. J Oral Surg 16:22–30PubMedGoogle Scholar
  71. 71.
    Medical Data International (1999) U.S. Markets for dental implants and dental bone substitutes. Medical Data International, CaryGoogle Scholar
  72. 72.
    Jochum RM, Reichart PA (2000) Influence of multiple use of Timedur titanium cannon drills: thermal response and scanning electron microscopic findings. Cin Oral Implants Res 11:139–143CrossRefGoogle Scholar
  73. 73.
    Scarano A, Carinci F, Quaranta A et al (2007) Effects of bur wear during implant site preparation: an in vitro study. Int J Immunopathol Pharmacol 20(1 suppl 1):23–26PubMedGoogle Scholar
  74. 74.
    Sutter F, Krekeler G, Schwammerger AE, Sutter FJ (1992) Atraumatic surgical technique and implant bed preparation. Quintessence Int 23:811–816PubMedGoogle Scholar
  75. 75.
    Pallan FG (1960) Histological changes in bone after insertion of skeletal fixation pins. J Oral Surg Anesth Hosp D Serv 18:400–408Google Scholar
  76. 76.
    Eriksson RA, Albrektsson T, Albrektsson B (1984) Temperature measurements at drilling in cortical bone in vivo. Heat induced bone tissue injury [Postdoctoral thesis]. University of Goteborg, Goteborg, pp 41–43Google Scholar
  77. 77.
    Hobkirk J, Rusiniak K (1977) Investigation of variable factors in drilling bone. J Oral Surg 35:968–973PubMedGoogle Scholar
  78. 78.
    Reingewirtz Y, Szmukler-Moncler S, Senger B (1997) Influence of different parameters on bone heating and drilling in implantology. Clin Oral Implant Res 8:189–197CrossRefGoogle Scholar
  79. 79.
    Eriksson R, Adell R (1986) Temperatures during drilling for the placement of implants using the osseointegration technique. J Oral Maxillofac Surg 44:4–7PubMedCrossRefGoogle Scholar
  80. 80.
    Abouzgia MB, James DF (1995) Measurements of shaft speed while drilling through bone. J Oral Maxillofac Surg 53:1308–1315PubMedCrossRefGoogle Scholar
  81. 81.
    Abouzgia NB, Symington JM (1996) Effect of drill speed on bone temperature. Int J Oral Maxillofac Surg 25:394–399PubMedCrossRefGoogle Scholar
  82. 82.
    Abouzgia MB, James DF (1997) Temperature rise during drilling through bone. Int J Oral Maxillofac Implants 12:342–353PubMedGoogle Scholar

Copyright information

© Indian Prosthodontic Society 2014

Authors and Affiliations

  1. 1.Department of Maxillofacial Prosthodontics and ImplantologyRishiraj College of Dental Sciences & Research CentreBhopalIndia
  2. 2.Branemark Osseointegration Center IndiaGulbargaIndia

Personalised recommendations