Advertisement

Systematic Traffic Peak Period Identification Using Bottom-Up Segmentation and Wavelet Transformation

  • Patrick Connors
  • Sara Respati
  • Anshuman Sharma
  • Ashish BhaskarEmail author
Article
  • 5 Downloads

Abstract

This paper develops a framework to test Bottom-up segmentation and Wavelet transform capability to distinguish on-peak from off-peak periods given the time series of the travel time. The proposed techniques are tested on the times series of travel time obtained from 15 working days of Bluetooth data on Brisbane’s busiest urban corridor. This study shows that the peak period can be systematically determined from either Bottom-up segmentation or WT on the time series of travel times. The Bottom-up segmentation technique estimated a mean peak period over the 15 working days of 106 min, compared to 99 min with Wavelet transformation. Further investigation is warranted should a recommendation be made as to which technique can more reliably estimate peak period.

Keywords

Peak period Segmentation Bottom-up Wavelet transform Bluetooth data 

Notes

Acknowledgements

The authors would like to thank the Brisbane City Council for providing the Bluetooth data used for this research.

References

  1. 1.
    Brisbane City Council: Greater Brisbane Key Corridors Performance July–December 2017. Queensland Department of Transport and Main Roads (2018)Google Scholar
  2. 2.
    Alfa, A. S and Chen, M., “Timing plans for a signalized intersection during the peak period”, Engineering optimization, 15(2), Taylor & Francis Group, 1989. pp. 153–162, doi: https://doi.org/10.1080/03052158908941149 CrossRefGoogle Scholar
  3. 3.
    Hellinga, B., Abdy, Z.: Signalized intersection analysis and design: implications of day-to-day variability in peak-hour volumes on delay. J. Transp. Eng. 134(7), 307–318 (2008).  https://doi.org/10.1061/(ASCE)0733-947X(2008)134:7(307) CrossRefGoogle Scholar
  4. 4.
    Arnott, R., De Palma, A., Lindsey, R.: A structural model of peak-period congestion: a traffic bottleneck with elastic demand. Am. Econ. Rev. 83(1), 161–179 (1993)Google Scholar
  5. 5.
    Hu, R., Chen, L., Zheng, L.: Congestion pricing and environmental cost at Guangzhou Baiyun international airport. J. Air Transp. Manag. 70, 126–132 (2018).  https://doi.org/10.1016/j.jairtraman.2018.04.016 CrossRefGoogle Scholar
  6. 6.
    Alfa, A.S., Chen, M.: Temporal distribution of public transport demand during the peak period. Eur. J. Oper. Res. 83(1), 137–153 (1995).  https://doi.org/10.1016/0377-2217(93)E0311-K CrossRefzbMATHGoogle Scholar
  7. 7.
    Jara-Díaz, S., Fielbaum, A., Gschwender, A.: Optimal fleet size, frequencies and vehicle capacities considering peak and off-peak periods in public transport. Transp. Res. A. 106, 65–74 (2017).  https://doi.org/10.1016/j.tra.2017.09.005 CrossRefzbMATHGoogle Scholar
  8. 8.
    Cole-Hunter, T.A.: Effects of Air Pollution Exposure on Adult Bicycle Commuters: an Investigation of Respiratory Health, Motorised Traffic Proximity and the Utility of Commute Re-Routing. Queensland University of Technology (2012)Google Scholar
  9. 9.
    Bolland, J and Ashmore, D.: Traffic Peak Spreading in Congested Urban Environments”, 25th Australasian Transport Research Forum, 2–4 October. Canberra. (2002)Google Scholar
  10. 10.
    Holyoak, N and Chang, Y. M.: Peak spreading behaviour and model development”, 29th Australasian Transport Research Forum (ATRF) Proceedings, 29. (2006)Google Scholar
  11. 11.
    Bhaskar, A., Qu, M., Chung, E.: Hybrid model for motorway travel time estimation considering increased detector spacing. TRR. 2442, 71–84 (2014)Google Scholar
  12. 12.
    Bhaskar, A., Tsubota, T., Kieu, L.M., Chung, E.: Urban traffic state estimation: fusing point and zone based data. TRR. 48, 120–142 (2014)Google Scholar
  13. 13.
    Respati, S. W., Bhaskar, A., Zheng, Z and Chung, E.: Systematic Identification of Peak Traffic Period”, 2017.. Australasian Transport Research Forum 2017 ProceedingsGoogle Scholar
  14. 14.
    Brisbane City Council,:Key Corridors Performance Report January – June 2015”, pp.5. 2015. Queensland Department of Transport and Main RoadsGoogle Scholar
  15. 15.
    Nantes, A., Ngoduy, D., Bhaskar, A., Miska, M., Chung, E.: Real-time traffic state estimation in urban corridors from heterogeneous data. TRR. 66, 99–118 (2016)Google Scholar
  16. 16.
    Abedi, N., Bhaskar, A., Chung, E.: Tracking spatio temporal movement of human in terms of space utilization using media access control address data. Appl. Geogr. 51, 72–81 (2014)CrossRefGoogle Scholar
  17. 17.
    Abedi, N., Bhaskar, A., Chung, E., Miska, M.: Assessment of antenna characteristic effects on pedestrian and cyclists travel-time estimation based on Bluetooth and WiFi MAC addresses. TRR. 60, 124–141 (2015)Google Scholar
  18. 18.
    Tsubota, T., Bhaskar, A., Chung, E.: Macroscopic fundamental diagram for Brisbane, Australia: empirical findings on network partitioning and incident detection. TRR. 2241(1), 12–21 (2014).  https://doi.org/10.3141/2421-02 CrossRefGoogle Scholar
  19. 19.
    Kieu, L.M., Bhaskar, A., Chung, E.: Empirical modelling of the relationship between bus and car speeds on signalised urban networks. Transp. Plan. Technol. 38(4), 465–482 (2015).  https://doi.org/10.1080/03081060.2015.1026104 CrossRefGoogle Scholar
  20. 20.
    Michau, G., Nantes, A., Bhaskar, A., Chung, E.: Bluetooth data in urban context: retrieving vehicle trajectories. IEEE Trans. Intell. Transp. Syst. 18(9), 2377–2386 (2017. (In Press).  https://doi.org/10.1109/TITS.2016.2642304 CrossRefGoogle Scholar
  21. 21.
    Michau, G., Pustelnik, N., Borgnat, P., Bhaskar, A., Chung, E.: A primal-dual algorithm for link dependent origin destination matrix estimation. IEEE. 3(1), 104–113 (2017).  https://doi.org/10.1109/TSIPN.2016.2623094 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Bhaskar, A., Chung, E.: Fundamental understanding on the use of Bluetooth scanner as a complementary transport data. TRR. 37, 42–72 (2013)Google Scholar
  23. 23.
    Bhaskar, A, Kieu, L. M. K., Qu, Minh, Nantes, A, Miska, M and Chung, E, “Is bus overrepresented in Bluetooth MAC Scanner data? Is MAC-ID really unique? “,Int. J. Intell. Transp. Syst. Res., 13(2), 2015 .pp. 119–130CrossRefGoogle Scholar
  24. 24.
    Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: A survey and novel approach. Data mining in time series databases. 57, 1–22 (2004).  https://doi.org/10.1142/9789812565402_0001 Google Scholar
  25. 25.
    Samant, A., Adeli, H.: Feature extraction for traffic incident detection using wavelet transform and linear discriminant analysis. CACIE. 15(4), 241–250 (2003).  https://doi.org/10.1111/0885-9507.00188 CrossRefGoogle Scholar
  26. 26.
    Zheng, Z., Ahn, S., Chen, D., Laval, J.: Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet. Transp. Res. B Methodol. 45(9), 1378–1388 (2011).  https://doi.org/10.1016/j.trb.2011.05.012 CrossRefGoogle Scholar
  27. 27.
    Zheng, Z., Ahn, S., Chen, D., Laval, J.: Applications of wavelet transform for analysis of freeway traffic: bottlenecks, transient traffic, and traffic oscillations. Transp. Res. B Methodol. 45(2), 372–384 (2011).  https://doi.org/10.1016/j.trb.2010.08.002 CrossRefGoogle Scholar
  28. 28.
    Xie, Y., Zhang, Y., Ye, Z.: Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition. Computer-Aided Civil Infrastructure Engineering. 22(5), 326–334 (2007).  https://doi.org/10.1111/j.1467-8667.2007.00489.x CrossRefGoogle Scholar
  29. 29.
    “Wavelets 4 Dummies: Signal Processing, Fourier Transforms and Heisenberg”. Available at: https://georgemdallas.wordpress.com/2014/05/14/wavelets-4-dummies-signal-processing-fourier-transforms-and-heisenberg/ (accessed 15 Sept 2018)
  30. 30.
    Zheng, Z., Washington, S.: On selecting an optimal wavelet for detecting singularities in traffic and vehicular data. Transp. Res. C. 25(C), 18–33 (2012).  https://doi.org/10.1016/j.trc.2012.03.006 CrossRefGoogle Scholar
  31. 31.
    Department of Transport and Main Roads: Queensland Transport and Roads Investment Program 2017-18 to 2020-21 Queensland Transport and Roads Investment Program (QTRIP), (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Patrick Connors
    • 1
  • Sara Respati
    • 1
  • Anshuman Sharma
    • 2
  • Ashish Bhaskar
    • 1
    Email author
  1. 1.School of Civil Engineering & Built EnvironmentQueensland University of Technology (QUT)BrisbaneAustralia
  2. 2.School of Civil EngineeringThe University of QueenslandSt. LuciaAustralia

Personalised recommendations