Advertisement

Travel Time Variability and Macroscopic Fundamental Diagram Relationships in Multimodal Networks

  • Seham Hemdan
  • Amr M. Wahaballa
  • Fumitaka KurauchiEmail author
Article
  • 80 Downloads

Abstract

Travel time variability (TTV) must be considered in evaluations of the effect of traffic control on transport network performance. The objective of this paper was to investigate the relationship between a travel time variability diagram (TTVD), which relates average travel time to its standard deviation, and a macroscopic fundamental diagram (MFD), which relates average network flow to its average density. Recent studies indicated hysteresis loops in TTVD (for journeys with the same average travel time, the TTVs for departures as congestion dissipates are higher than the TTVs for departures during congestion onset) and in the MFD (with the same network density, higher network flows occur during congestion onset than during congestion offset). Based on a simulation results, we evaluated the correlations between these loops in a multimodal network. Strong correlations were found between TTVD and MFD loops. Next, we developed combined diagrams of travel time standard deviations against network flow and density. These diagrams revealed the presence of a critical network flow and density during congested periods; beyond these critical points, the TTV increases sharply. These findings may facilitate evaluation of management strategies that consider both traffic flow and reliability measures.

Keywords

Travel time variability Multimodal network Macroscopic fundamental diagram Hysteresis loop 

Notes

References

  1. 1.
    Lyman, K., Bertini, R.: Using travel time reliability measures to improve regional transportation planning and operations. Transp. Res. Rec. J. Transp. Res Board. 2046, 1–10 (2008).  https://doi.org/10.3141/2046-01 CrossRefGoogle Scholar
  2. 2.
    Saberi, M., Bertini, B.: “Beyond Corridor Reliability Measures: Analysis of Freeway Travel Time Reliability at the Segment Level for Hot Spot Identification” in Transportation Research Board 89th Annual Meeting. Washington, DC (2010)Google Scholar
  3. 3.
    Hasan, S., Ben-Akiva, M.E., Choudhury, C., Emmonds, A.: Modeling travel time variability on urban links in London. In: Proceedings of European Transport Conference, the Netherlands (2009)Google Scholar
  4. 4.
    Rakha, H, El-Shawarby, I, Arafeh, M and Dion, F, “Estimating path travel-time reliability” in proceedings of 9th international IEEE conference on intelligent transportation systems, Toronto, 2006, pp. 236–241Google Scholar
  5. 5.
    Geroliminis, N., Daganzo, C.: Existence of urban-scale macroscopic fundamental diagrams: some experimental findings. Transp. Res. B Methodol. 42(9), 759–770 (2008).  https://doi.org/10.1016/j.trb.2008.02.002 CrossRefGoogle Scholar
  6. 6.
    Buisson, C., Ladier, C.: Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams. Transp. Res. Rec. J. Transp Res. Board. 2124, 127–136 (2009).  https://doi.org/10.3141/2124-12 CrossRefGoogle Scholar
  7. 7.
    Ji, Y., Daamen, W., Hoogendoorn, S., Hoogendoorn-Lanser, S., Qian, X.: Investigating the shape of the macroscopic fundamental diagram using simulation data. Transp. Res. Rec. J Transp. Res. Board. 2161, 40–48 (2010).  https://doi.org/10.3141/2161-05 CrossRefGoogle Scholar
  8. 8.
    Mahmassani, H., Hou, T., Saberi, M.: Connecting networkwide travel time reliability and the network fundamental diagram of traffic flow. Transp. Res. Rec. J. Transp. Res. Board. 2391, 80–91 (2013).  https://doi.org/10.3141/2391-08 CrossRefGoogle Scholar
  9. 9.
    Bates, J., Fearon, J., Black, I.: Frameworks for modelling the variability of journey times on the highway network. In: Technical Report, ARUP (2004)Google Scholar
  10. 10.
    Mazloumian, A, Geroliminis, N and Helbing, D, “The spatial variability of vehicle densities as determinant of urban network capacity”, philosophical transactions of the Royal Society a: mathematical, physical and engineering sciences, 368(1928), 2010, pp. 4627-4647,  https://doi.org/10.1098/rsta.2010.0099
  11. 11.
    Geroliminis, N., Sun, J.: Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transp. Res. B Methodol. 45(3), 605–617 (2011).  https://doi.org/10.1016/j.trb.2010.11.004 CrossRefGoogle Scholar
  12. 12.
    Mittal, A., Mahmassani, H., Talebpour, A.: Network flow relations and travel time reliability in a connected environment. Transp. Res. Rec. J. Transp. Res. Board. 2622, 24–37 (2017).  https://doi.org/10.3141/2622-03 CrossRefGoogle Scholar
  13. 13.
    Yildirimoglu, M., Koymans, A., Geroliminis, N.: “Exploring the Properties of Mean-Variance Relations in Freeway Travel Times” in Transportation Research Board 92nd Annual Meeting. Washington, DC (2013)Google Scholar
  14. 14.
    Gayah, V., Dixit, V., Guler, S.: Relationship between mean and day-to-day variation in travel time in urban networks. EURO J Transp. Logist. 3(3-4), 227–243 (2013).  https://doi.org/10.1007/s13676-013-0032-2 CrossRefGoogle Scholar
  15. 15.
    Van Lint, J., van Zuylen, H., Tu, H.: Travel time unreliability on freeways: why measures based on variance tell only half the story. Transp. Res. A Policy Pract. 42(1), 258–277 (2008).  https://doi.org/10.1016/j.tra.2007.08.008 CrossRefGoogle Scholar
  16. 16.
    Brownstone, D., Small, K.: Valuing time and reliability: assessing the evidence from road pricing demonstrations. Transp. Res. A Policy Pract. 39(4), 279–293 (2005).  https://doi.org/10.1016/j.tra.2004.11.001 CrossRefGoogle Scholar
  17. 17.
    Bates, J., Polak, J., Jones, P., Cook, A.: The valuation of reliability for personal travel. Transport Res E-Log. 37(2-3), 191–229 (2001).  https://doi.org/10.1016/s1366-5545(00)00011-9 CrossRefGoogle Scholar
  18. 18.
    Lam, T., Small, K.: The value of time and reliability: measurement from a value pricing experiment. Transport Res E-Log. 37(2-3), 231–251 (2001).  https://doi.org/10.1016/s1366-5545(00)00016-8 CrossRefGoogle Scholar
  19. 19.
    Wahaballa, A.M., Kurauchi, F., Takagi, A., Othman, A.M.: Benefits of improvement in travel time reliability resulting from real-time information provision. In: Proceedings of the 5th International Symposium on Transportation Network Reliability, Hong Kong (2012)Google Scholar
  20. 20.
    Wahaballa, A.M., Kurauchi, F., Takagi, A., Othman, A.M.: Review of benefit evaluation models for travel time reliability improvements. In: Proceedings of the 41st Conference on Infrastructure Planning, p. 2010. Japan Society of Civil Engineering, NagoyaGoogle Scholar
  21. 21.
    Prigogine, I., Herman, R.: Kinetic Theory of Vehicular Traffic. Elsevier, New York (1971)zbMATHGoogle Scholar
  22. 22.
    Taylor, M.: Travel time variability—the case of two public modes. Transp. Sci. 16(4), 507–521 (1982).  https://doi.org/10.1287/trsc.16.4.507 CrossRefGoogle Scholar
  23. 23.
    Mahmassani, H., Hou, T., Dong, J.: Characterizing travel time variability in vehicular traffic networks. Transp. Res. Rec. J. Transp. Res. Board. 2315, 141–152 (2012).  https://doi.org/10.3141/2315-15 CrossRefGoogle Scholar
  24. 24.
    Saberi, M., Mahmassani, H.: Exploring properties of networkwide flow-density relations in a freeway network. Transp. Res. Rec. J. Transp. Res. Board. 2315, 153–163 (2012).  https://doi.org/10.3141/2315-16 CrossRefGoogle Scholar
  25. 25.
    Knoop, V, Hoogendoorn, S and van Lint, J, “Routing strategies based on macroscopic fundamental diagram”, Transp. Res. Rec. J. Transp. Res. Board, 2315, 2012, pp. 1–10,  https://doi.org/10.3141/2315-01
  26. 26.
    Zheng, N., Waraich, R., Axhausen, K., Geroliminis, N.: “A dynamic cordon pricing scheme combining the macroscopic fundamental diagram and an agent-based traffic model”, transportation research part a: policy and practice, 46(8), 2012, pp. 1291-1303.  https://doi.org/10.1016/j.tra.2012.05.006
  27. 27.
    Zheng, N., Geroliminis, N.: On the distribution of urban road space for multimodal congested networks. Transp. Res. B Methodol. 57, 326–341 (2013).  https://doi.org/10.1016/j.trb.2013.06.003 CrossRefGoogle Scholar
  28. 28.
    Fosgerau, M.: On the relation between the mean and variance of delay in dynamic queues with random capacity and demand. J. Econ. Dyn. Control. 34(4), 598–603 (2010).  https://doi.org/10.1016/j.jedc.2009.12.002 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Vickrey, W.: Congestion theory and transport investment. Am. Econ. Rev. 59(2), 251–260 (1969) http://www.jstor.org/stable/1823678 Google Scholar
  30. 30.
    Gayah, V., Daganzo, C.: Clockwise hysteresis loops in the macroscopic fundamental diagram: an effect of network instability. Transp. Res. B Methodol. 45(4), 643–655 (2011).  https://doi.org/10.1016/j.trb.2010.11.006 CrossRefGoogle Scholar
  31. 31.
    Edie, L.C.: Discussion of traffic stream measurements and definitions. In: Almond, J. (ed.) Proceedings of the 2nd International Symposium on the Theory of Traffic Flow, pp. 139–154. OECD, Paris (1963)Google Scholar
  32. 32.
    Treiterer, J., Myers, J.: “The hysteresis phenomenon in traffic flow” in proceedings of the 6th international symposium on transportation and traffic theory. ISTTT. 6, 13–38 (1974)Google Scholar
  33. 33.
    Zhang, H.: A mathematical theory of traffic hysteresis. Transp. Res. B Methodol. 33(1), 1–23 (1999).  https://doi.org/10.1016/s0191-2615(98)00022-8 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Nagel, K, and Flötteröd, G, “Agent-Based Traffic Assignment: Going from Trips to Behavioral Travelers” in Proceedings of the 12th International Conference on Travel Behaviour Research (IATBR), Jaipur, 2009Google Scholar
  35. 35.
    Chakirov, A., Fourie, P.: Enriched Sioux Falls scenario with dynamic and disaggregate demand. Arbeitsberichte Verkehrs-und Raumplanung. 978, 2014 (2014) http://hdl.handle.net/20.500.11850/80996 Google Scholar
  36. 36.
    Rieser, M., Grether, D., Nagel, K.: Adding mode choice to multiagent transport simulation. Trans. Res. Rec. J. Transp. Res. Board. 2132, 50–58 (2009).  https://doi.org/10.3141/2132-06 CrossRefGoogle Scholar
  37. 37.
    Hemdan, S., Wahaballa, A.M., Kurauchi, F.: Quantification of the hysteresis of macroscopic fundamental diagrams and its relationship with the congestion heterogeneity and performance of a multimodal network. J. Transp. Technol. 8(1), 44–64 (2018).  https://doi.org/10.4236/jtts.2018.81003 CrossRefGoogle Scholar
  38. 38.
    Hemdan, S., Wahaballa, A.M., Kurauchi, F.: Evaluating travel choices effect on multimodal network performance using vehicle and passenger macroscopic fundamental diagrams. J East Asia Soc. Transp. Studies. 12, 1710–1727 (2017).  https://doi.org/10.11175/easts.12.1710 Google Scholar
  39. 39.
    Rieser, M.: Adding Transit to an Agent-Based Transportation Simulation. PhD dissertation, Swiss Federal Institute of Technology (2010)Google Scholar
  40. 40.
    Grether, D., Chen, Y., Rieser, M., Nagel, K.: “Effects of a Simple Mode Choice Model in a Large-Scale Agent-Based Transport Simulation”, in Advances in Spatial Science, pp. 167–186. Complexity and Spatial Networks, Springer Berlin Heidelberg (2009)Google Scholar
  41. 41.
    Horni, A, Charypar, D and Axhausen, K.W, “Variability in Transport Microsimulations Investigated for MATSim: Preliminary Results”, Eidgenössische Technische Hochschule Zürich, Institut für Verkehrsplanung und Transportsysteme, 2011Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gifu UniversityGifuJapan
  2. 2.Aswan UniversityAswanEgypt

Personalised recommendations