Advertisement

Determinants of Travel Choice Behaviour with Travel-Time Variability in the Presence of Real-Time Information

  • Fumitaka Kurauchi
  • Amr M. Wahaballa
  • Ayman M. Othman
  • Nobuhiro Uno
  • Akiyoshi Takagi
Article
  • 77 Downloads

Abstract

This paper provided a statistical analysis of route and departure time choice behaviour under the effects of travel-time variability and real-time information for commuters in Japan using a web-based stated preference survey data. Furthermore, we developed a model predicting the relationship between the shift in average travel time and its reliability with the average travel time and real-time information provided. A factorial ANOVA underscored a significant effect of travel-time variability and real-time information on both departure time and route choice behaviour. The proposed model estimated the expected travel cost based on the estimated optimal departure time before and after having real-time information. This model may be useful for evaluating the benefit of travel-time reliability improved by the provision of real-time information.

Keywords

Departure time choice Route choice Travel-time variability Real-time information 

References

  1. 1.
    Jackson, W., Jucker, J.: An empirical study of travel-time variability and travel choice behaviour. Transp Sci. 16(4), 446–475 (1981).  https://doi.org/10.1287/trsc.16.4.460 CrossRefGoogle Scholar
  2. 2.
    Abdel-Aty, M.A., Kitamura, R., Jovanis, P.P.: Investigating effect of travel time variability on route choice using repeated-measurement stated preference data. Transp. Res. Rec. 1493, 39–45 (1995) http://onlinepubs.trb.org/Onlinepubs/trr/1995/1493/1493-005.pdf Google Scholar
  3. 3.
    Clark, S., Watling, D.: Modelling network travel time reliability under stochastic demand. Transp Res B: Methodol. 3(92)), 119–140 (2005).  https://doi.org/10.1016/j.trb.2003.10.006 CrossRefGoogle Scholar
  4. 4.
    Brownstone, D., Small, K.A.: Valuing time and reliability: assessing the evidence from road pricing demonstrations. Transp Res A: Policy Prac. 39, 279–293 (2005).  https://doi.org/10.1016/j.tra.2004.11.001 CrossRefGoogle Scholar
  5. 5.
    Tu, H, van Lint, J, and van Zuylen, H, “Impact of traffic flow on travel time variability of freeway corridors”, Transp. Res. Rec., 1993, 2007, pp. 59–66,  https://doi.org/10.3141/1993-09
  6. 6.
    Li, H., Bliemer, M., Bovy, P.: Modeling departure time choice under stochastic networks involved in network design. Transp. Res. Rec. 2091, 61–69 (2009).  https://doi.org/10.3141/2091-07 CrossRefGoogle Scholar
  7. 7.
    van Lint, J.W.C., van Zuylen, H.J., Tu, H.: Travel time unreliability on freeways: why measures based on variance tell only half the story. Transp Res A: Policy Prac. 42, 258–277 (2008).  https://doi.org/10.1016/j.tra.2007.08.008 CrossRefGoogle Scholar
  8. 8.
    Kwon, J., Barkley, T., Hranac, R., Petty, K., Compin, N.: Decomposition of travel time reliability into various sources. Transp. Res. Rec. 2229, 28–33 (2011).  https://doi.org/10.3141/2229-04 CrossRefGoogle Scholar
  9. 9.
    Sweet, M.N., Chen, M.: Does regional travel time unreliability influence mode choice? Transportation. 38, 625–642 (2011).  https://doi.org/10.1007/s11116-011-9335-z CrossRefGoogle Scholar
  10. 10.
    Peer, S., Koopmans, C.C., Verhoef, E.T.: Prediction of travel time variability for cost-benefit analysis. Transp Res A: Policy Prac. 46, 79–90 (2012).  https://doi.org/10.1016/j.tra.2011.09.016 CrossRefGoogle Scholar
  11. 11.
    Tu, H, Li, H, van Lint, H, and van Zuylen, H, “Modeling travel time reliability of freeways using risk assessment techniques”, Transp. Res. A Policy Pract., 46, 2012, pp. 1528–1540,  https://doi.org/10.1016/j.tra.2012.07.009
  12. 12.
    Small, K.A.: Valuation of travel-time savings and predictability in congested conditions for highway user-cost estimation”. In Transportation Research Board, National Research Council, (1999)Google Scholar
  13. 13.
    Bates, J., Polak, J., Jones, P., Cook, A.: The valuation of reliability for personal travel. Transp Res E: Log Transp Rev. 37, 191–229 (2001).  https://doi.org/10.1016/S1366-5545(00)00011-9 CrossRefGoogle Scholar
  14. 14.
    Fosgerau, M., Karlström, A.: The value of reliability. Transp. Res. B Methodol. 44, 38–49 (2010).  https://doi.org/10.1016/j.trb.2009.05.002 CrossRefGoogle Scholar
  15. 15.
    Polak, J, Hess, S, and Liu, X.: Characterising heterogeneity in attitudes to risk in expected utility models of mode and departure time choice. In Transportation Research Board 87th Annual Meeting, Washington, DC, (2008)Google Scholar
  16. 16.
    Koster, P., Verhoef, E.T.: A rank-dependent scheduling model. J Transp Econ Policy. 46(1), 123–138 (2012) http://www.ingentaconnect.com/content/lse/jtep/2012/00000046/00000001/art00007#expand/collapse Google Scholar
  17. 17.
    Polak, P.: A more general model of individual departure time choice transportation planning methods. In Proceedings of seminar C held at the PTRC summer annual meeting, 1987, pp. 247–258Google Scholar
  18. 18.
    Black, I, and Towriss, J.: Quantifying the value of uncertainty in travel time, in Proceedings of 18th PTRC Summer Annual Meeting, University of Sussex, United Kingdom. (1991)Google Scholar
  19. 19.
    Abdel-Aty, M, Kitamura, R, Jovanis, P, and Vaughn, K.: Investigation of criteria influencing route choice: initial analysis using revealed and stated preference data, Research Report UCD-ITS-RR-94-12. Institute of Transportation Studies, University of California at Davis, Davis, California.(1994)Google Scholar
  20. 20.
    Hollander, Y.: Direct versus indirect models for the effects of unreliability. Transp. Res. A Policy Pract. 40, 699–711 (2006).  https://doi.org/10.1016/j.tra.2005.12.007 CrossRefGoogle Scholar
  21. 21.
    Asensio, J., Matas, A.: Commuters’ valuation of travel time variability. Transp Res E: Log Transp Rev. 44, 1074–1085 (2008).  https://doi.org/10.1016/j.tre.2007.12.002 CrossRefGoogle Scholar
  22. 22.
    Li, Z., Hensher, D.A., Rose, J.M.: Willingness to pay for travel time reliability in passenger transport: a review and some new empirical evidence. Transp Res E: Log Transp Rev. 46, 384–403 (2010).  https://doi.org/10.1016/j.tre.2009.12.005 CrossRefGoogle Scholar
  23. 23.
    Kim, J., Mahmassani, H.S.: Compound Gamma representation for modeling travel time variability in a traffic network. Transp Res B: Methodol. 80, 40–63 (2015).  https://doi.org/10.1016/j.trb.2015.06.011 CrossRefGoogle Scholar
  24. 24.
    Mahmassani, H.S.: Dynamic models of commuter behavior: experimental investigation and application to the analysis of planned traffic disruptions. Transp Res A: Policy Prac. 24, 465–484 (1990).  https://doi.org/10.1016/0191-2607(90)90036-6 CrossRefGoogle Scholar
  25. 25.
    Mahmassani, H.S., Herman, R.: Interactive experiments for the study of trip maker behaviour dynamics in congested commuting systems. In: Jones, P. (ed.) Developments in Dynamic and Activity-Based Approaches to Travel Analysis. Aldershot. Avebury, United Kingdom (1990)Google Scholar
  26. 26.
    Conquest, L., Spyridakis, J., Haselkom, M., Barfield, W.: The effect of motorist information on commuter behavior: classification of drivers into commuter groups. Transp Res C: Emerg Technol. 2(1), 183–201 (1993).  https://doi.org/10.1016/0968-090X(93)90013-6 CrossRefGoogle Scholar
  27. 27.
    Spyridakis, J., Barfield, W., Conquest, L., Haselkom, M., Isakson, C.: Surveying commuter behavior: Designing motorist information systems. Transp Res A: Policy Prac. 25(l), 17–30 (1991).  https://doi.org/10.1016/0191-2607(91)90152-G CrossRefGoogle Scholar
  28. 28.
    Polak, J., Jones, P.: The acquisition of pre-trip information: a stated preference approach. Transportation. 20, 179–198 (1993).  https://doi.org/10.1007/BF01307058 CrossRefGoogle Scholar
  29. 29.
    Mahmassani, H.S., Jou, R.C.: Transferring insights into commuter behavior dynamics from laboratory experiments to field surveys. Transp Res A: Policy Prac. 34, 243–260 (2000).  https://doi.org/10.1016/S0965-8564(99)00003-8 CrossRefGoogle Scholar
  30. 30.
    Caplice, C., Mahmassani, H.S.: Aspects of commuting behavior: preferred arrival time, use of information and switching propensity. Transp Res A: Policy Prac. 26(5), 409–418 (1992).  https://doi.org/10.1016/0965-8564(92)90004-Q CrossRefGoogle Scholar
  31. 31.
    Jong, G., Daly, A., Pieters, M., Vellay, C., Bradley, M., Hofman, F.: A model for time of day and mode choice using error components logit. Transp Res E: Log Transp Rev. 39(3), 245–268 (2003).  https://doi.org/10.1016/S1366-5545(02)00037-6 CrossRefGoogle Scholar
  32. 32.
    Bernardino, A., Ben-Akiva, M., Salomon, I.: Stated preference approach to modeling the adoption of telecommuting. Transp. Res. Rec. 1413, 22–30 (1993) http://onlinepubs.trb.org/Onlinepubs/trr/1993/1413/1413-003.pdf Google Scholar
  33. 33.
    Bunch, D., Bradley, M., Golob, T., Kitamura, R., Occhiuzzo, G.: Demand for clean-fuel vehicles in California: a discrete-choice stated preference pilot project. Transp Res A: Policy Prac. 27(3), 237–253 (1993).  https://doi.org/10.1016/0965-8564(93)90062-P CrossRefGoogle Scholar
  34. 34.
    Hensher, D.A.: Stated preference analysis of travel choices: the state of practice. Transportation. 21(2), 107–133 (1994).  https://doi.org/10.1007/BF01098788 CrossRefGoogle Scholar
  35. 35.
    Small, K.A.: The scheduling of consumer activities: work trips. Am. Econ. Rev. 72(3), 467–479 (1982) http://www.jstor.org/stable/1831545 Google Scholar
  36. 36.
    Kurauchi, F, Ito, H, Furuichi, E, Uno, N, Nagata, N, and Tanaka, T.: Benefit of travel-time reliability improvement by opening Shin-Meishin highway using scheduling approach., In Proceedings of Infrastructure Planning, 40 CD-ROM, Japanese Society of Civil Engineering, JSCE. (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gifu UniversityGifuJapan
  2. 2.Aswan UniversityAswanEgypt
  3. 3.Kyoto UniversityKyotoJapan

Personalised recommendations