Advertisement

Analysis of Large-Scale Traffic Dynamics in an Urban Transportation Network Using Non-Negative Tensor Factorization

  • Yufei Han
  • Fabien Moutarde
Article

Abstract

In this paper, we present our work on clustering and prediction of temporal evolution of global congestion configurations in a large-scale urban transportation network. Instead of looking into temporal variations of traffic flow states of individual links, we focus on temporal evolution of the complete spatial configuration of congestions over the network. In our work, we pursue to describe the typical temporal patterns of the global traffic states and achieve long-term prediction of the large-scale traffic evolution in a unified data-mining framework. To this end, we formulate this joint task using regularized Non-negative Tensor Factorization, which has been shown to be a useful analysis tool for spatio-temporal data sequences. Clustering and prediction are performed based on the compact tensor factorization results. The validity of the proposed spatio-temporal traffic data analysis method is shown on experiments using simulated realistic traffic data.

Keywords

Large-scale traffic dynamics Non-negative tensor factorization 

Notes

Acknowledgments

This work was supported by the grant ANR-08-SYSC-017 from the French National Research Agency. The authors specially thank Cyril Furtlehner and Jean-Marc Lasgouttes for helpful discussions and providing the benchmark database used in this article.

References

  1. 1.
    Herring, R., Hofleitner, A., Amin, S., Nasr, T., Khalek, A., Abbeel, P., Bayen, A.: ‘Using mobile phones to forecast arterial traffic through statistical learning’. Proc. 89th Transportation Research Board Annual Meeting, Washington D.C. (USA) (2010)Google Scholar
  2. 2.
    Kinuta, Y., Kitamura, S., Nakamura, T., Makimura, K., Takahashi, M., Morokawa, T.: Examination of the applicability of probe car data to assessment of the effects of link-safety projects. Int. J. Intell. Transp. Syst. Res. 8(2), 67–76 (2010)Google Scholar
  3. 3.
    Work, D., Blandin, S., Tossavainen, O.-P, Piccoli, B., Bayen, A.: A Distributed Highway Velocity Model forTraffic State Reconstruction. Appl. Math. Res. Express (AMRX) 1, 1–35 (2010)Google Scholar
  4. 4.
    Thiagarajan, A., Sivalingam, L., LaCurts, K., Toledo, S., Eriksson, J., Madden, S., Balakrishnan, H.: ‘VTrack: Accurate, energy-aware traffic delay estimation using mobile phones’. Proc. 7th ACM Conf. Embedded Networked Sensor Systems (SenSys), Berkeley CA (USA), 85–98 (2009)Google Scholar
  5. 5.
    Krause, A., Horvitz, E., Kansal, A., Zhao, F.: ‘Toward community sensing’. Proc. of Int. Conf. on Information Processing in Sensor Networks (IPSN), St Louis (USA), 481–492 (2008)Google Scholar
  6. 6.
    Liu, H., Ma, W.: A virtual vehicle probe model for time-dependent travel time estimation on signalized arterials. Transp. Res. C 17(1), 11–26 (2009)CrossRefGoogle Scholar
  7. 7.
    Jaeger, A., Bibmeyer, N., Stubing, H., Huss, A.S.: A novel framework for efficient mobility data verification in vehicular Ad-hoc networks. Int. J. Intell. Transp. Syst. Res. 10(1), 11–21 (2012)Google Scholar
  8. 8.
    Vanajakshi, L., Subramanian, S.C., Sivanandan, R.: Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses. IET Intell. Transp. Syst. 3(1), 1–9 (2009)CrossRefGoogle Scholar
  9. 9.
    Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Herty, M., Klar, A., Pareschi, L.: General kinetic models for vehicular traffic flow and Monte Carlo methods’. Comput. Methods Appl. Math. 5(2), 155–169 (2005)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Rakha, H.: Validation of Van Aerde’s Simplified Steady-state Car-following and Traffic Stream Model. Transp. Lett. : Int. J. Transp. Res. 1(3), 227–244 (2009)CrossRefGoogle Scholar
  12. 12.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. 2, 2221–2229 (1992)Google Scholar
  13. 13.
    Blandin, S., Work, D., Goatin, P., Piccoli, B., and Bayen, A.: ‘A general phase transition model for vehicular traffic’. SIAM J. Appl. Math., to appear (2011)Google Scholar
  14. 14.
    Wang, Y., Papageorgiou, M.: Real-time freeway traffic state estimation based on extended kalman filter: a general approach. Transp. Res. Part B 39, 141–167 (2005)CrossRefGoogle Scholar
  15. 15.
    Statthopoulos, A., Karlaftis, M.G.: A multivariate state space approach for urban traffic flow modeling and predicting. Transp. Res. C 11, 121–135 (2003)CrossRefGoogle Scholar
  16. 16.
    Helbing, D., Rarita, L., D’Apice, C., Piccoli, B.: Sensitivity analysis of permeability parameters for flows on Barcelona networks. J. Differ. Equat. 249(12), 3110–3131 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Helbing, D.: Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models. Eur. Phys. J. B 69(4), 539–548 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Helbing, D., Johansson, A.: On the controversy around Daganzo’s requiem for and Aw-Rascie’s resurrection of second-order traffic flow models. Eur. Phys. J. B 69(4), 549–562 (2009)CrossRefGoogle Scholar
  19. 19.
    Ghosh, B., Basu, B., O’Mahony, M.: Multivariate short-term traffic flow forecasting using time-series analysis. IEEE Trans. Intell. Transp. Syst. 10(2), 246–254 (2009)CrossRefGoogle Scholar
  20. 20.
    Yin, H., Wong, S.C., Xu, J., Wong, C.K.: Urban traffic flow prediction using a fuzzy-neural approach. Transp. Res. Part C: Emerg. Technol. 10(2), 85–98 (2002)CrossRefGoogle Scholar
  21. 21.
    Quek, Y., Pasquier, M., Lim, B.: POP-TRAFFIC: a novel fuzzy neural approach to link traffic analysis and prediction. IEEE Trans. Intell. Transp. Syst. 7(2), 133–146 (2006)CrossRefGoogle Scholar
  22. 22.
    Vlahogianni, E.I.: Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics. J. Intell. Transp. Syst. 13(2), 73–84 (2009)CrossRefGoogle Scholar
  23. 23.
    Furtlehner, C., Lasgouttes, J.-M., and de La Fortelle, A.: ‘A belief propagation approach to traffic prediction using probe vehicles’. Proc. 10th Int. Conf. Transportation Systems (ITSC), 1022–1027 (2007)Google Scholar
  24. 24.
    Arel, I., Liu, C., Urbanik, T., Kohis, A.G.: Reinforcement learning-based multi-agent system for network traffic signal control. IET Intell. Transp. Syst. 4(2), 128–135 (2010)CrossRefGoogle Scholar
  25. 25.
    Li, S.Z.: ‘Markov random field modeling in image analysis’ 3rd edn Springer Press, (2009)Google Scholar
  26. 26.
    Shoham, Y., Leyton-Brown, K.: ‘Multiagent systems: algorithmic, game- theoretic, and logical foundations’. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  27. 27.
    Geroliminis, N., Daganzo, C.F.: Existence of urban-scale macroscopic fundamental diagrams: some experimental findings. Transp. Res. B Methodol. 42(9), 759–770 (2008)CrossRefGoogle Scholar
  28. 28.
    Geroliminis, N., Sun, J.: Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transp. Res. B Methodol. 45(3), 605–617 (2011)CrossRefGoogle Scholar
  29. 29.
    Ji, Y., Geroliminis, N.: On the spatial partitioning of urban transportation networks. Transp. Res. B Methodol. 46(10), 1639–1656 (2012)CrossRefGoogle Scholar
  30. 30.
    Han, Y., Moutarde, F.: Statistical traffic state analysis in large-scale transportation networks using locality-preserving non-negative matrix factorization. IET J. Intell. Transp. Syst. 7(3), 283–295 (2013)CrossRefGoogle Scholar
  31. 31.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Wu, A.Y.: ‘An efficient k-means clustering algorithm: analysis and implementation’. IEEE Trans. Patterns Anal. Mach. Intell. 24, 881–892 (2002)CrossRefGoogle Scholar
  32. 32.
    Chi, C.E., Kolda, T.G.: On tensors, sparsity, and nonnegative factorizations. SIAM J. Matrix Appl. 33(4), 1272–1299 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Kolda, T.G., Bader, B.W.: ‘Tensor decomposition and applications’. SIAM Rev. 51(3), 455–500 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Liu, J., Liu J., Wonka, P., Ye, J.P.: ‘Sparse non-negative tensor factorization using column wise coordinate decent’. Pattern Recognition, 45(1) (2012)Google Scholar
  35. 35.
    Spiegel, S., Clausen, J., Albayrak, S, Kunegis, J.: ‘Link prediction on evolving data using tensor factorization’. Proc. 15th International Conference on New Frontiers in Applied Data Mining, 100–110 (2011)Google Scholar
  36. 36.
    Lee, D.D., Seung, H.S.: ‘Algorithms for non-negative matrix factorization’. Proc. 13th Neural Information Processing Systems (NIPS), Denver (USA), 556–562 (2000)Google Scholar
  37. 37.
    Xu, W., Liu, X., Gong, Y.H.: ‘Document clustering based on non-negative matrix factorization’. Proc. 26th ACM SIGIR, Toronto (Canada), 267–273 (2003)Google Scholar
  38. 38.
    Wang, Y., Jiang, Y., Wu, Y., Zhou, Z.H.: ‘Local and Structural Consistency for Multi-Manifold Clustering’. Proc. 22nd International Joint Conference on Artificial Intelligence (IJCAI), Barcelona (Spain), 1559–1564 (2002)Google Scholar
  39. 39.
    Chen, G.L., Lerman, G.: Spectral curvature clustering. Int. J. Comput. Vis. 81(3), 317–330 (2009)CrossRefGoogle Scholar
  40. 40.
    Chung, F.R.K.: ‘Spectral Graph Theory’. CBMS Regional Conference Series in Mathematics, (1997)Google Scholar
  41. 41.
    Agrawal, R., Gehrke, J., Gunopulos, D.: Automatic subspace clustering of high dimensional Data. Data Min. Knowl. Disc. 11(1), 5–33 (2005)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Boyd, S., Vandenberghe L.: ‘Convex optimization’. Cambridge University PressGoogle Scholar
  43. 43.
    Marchal F.: ‘Contribution to dynamic transportation models’. PhD Thesis, University of Cergy-Pontoise, (2001)Google Scholar
  44. 44.
    De Palma, A., Marchal, F.: Real cases applications of the fully dynamic METROPOLIS tool-box: an advocacy for large-scale macroscopic transportation systems. Netw. Spat. Econ. 2(4), 347–369 (2002)Google Scholar
  45. 45.
    Jolliffe, I.T.: ‘Principal component analysis’ 2nd edn Springer Press (2002)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.RITS(previously IMARA), INRIARocquencourtFrance
  2. 2.Robotics Lab (CAOR)Mines ParisTech, PSL Research UniversityParisFrance

Personalised recommendations