Cloud computing: state-of-the-art and research challenges

Open Access
Original Papers

Abstract

Cloud computing has recently emerged as a new paradigm for hosting and delivering services over the Internet. Cloud computing is attractive to business owners as it eliminates the requirement for users to plan ahead for provisioning, and allows enterprises to start from the small and increase resources only when there is a rise in service demand. However, despite the fact that cloud computing offers huge opportunities to the IT industry, the development of cloud computing technology is currently at its infancy, with many issues still to be addressed. In this paper, we present a survey of cloud computing, highlighting its key concepts, architectural principles, state-of-the-art implementation as well as research challenges. The aim of this paper is to provide a better understanding of the design challenges of cloud computing and identify important research directions in this increasingly important area.

Keywords

Cloud computing Data centers Virtualization 

References

  1. 1.
    Al-Fares M et al (2008) A scalable, commodity data center network architecture. In: Proc SIGCOMMGoogle Scholar
  2. 2.
    Amazon Elastic Computing Cloud, aws.amazon.com/ec2
  3. 3.
    Amazon Web Services, aws.amazon.com
  4. 4.
    Ananthanarayanan R, Gupta K et al (2009) Cloud analytics: do we really need to reinvent the storage stack? In: Proc of HotCloudGoogle Scholar
  5. 5.
    Armbrust M et al (2009) Above the clouds: a Berkeley view of cloud computing. UC Berkeley Technical ReportGoogle Scholar
  6. 6.
    Berners-Lee T, Fielding R, Masinter L (2005) RFC 3986: uniform resource identifier (URI): generic syntax, January 2005Google Scholar
  7. 7.
    Bodik P et al (2009) Statistical machine learning makes automatic control practical for Internet datacenters. In: Proc HotCloudGoogle Scholar
  8. 8.
    Brooks D et al (2000) Power-aware microarchitecture: design and modeling challenges for the next-generation microprocessors, IEEE MicroGoogle Scholar
  9. 9.
    Chandra A et al (2009) Nebulas: using distributed voluntary resources to build clouds. In: Proc of HotCloudGoogle Scholar
  10. 10.
    Chang F, Dean J et al (2006) Bigtable: a distributed storage system for structured data. In: Proc of OSDIGoogle Scholar
  11. 11.
    Chekuri C, Khanna S (2004) On multi-dimensional packing problems. SIAM J Comput 33(4):837–851MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Church K et al (2008) On delivering embarrassingly distributed cloud services. In: Proc of HotNetsGoogle Scholar
  13. 13.
    Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach C, Pratt I, Warfield A (2005) Live migration of virtual machines. In: Proc of NSDIGoogle Scholar
  14. 14.
    Cloud Computing on Wikipedia, en.wikipedia.org/wiki/Cloudcomputing, 20 Dec 2009
  15. 15.
    Cloud Hosting, CLoud Computing and Hybrid Infrastructure from GoGrid, http://www.gogrid.com
  16. 16.
    Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Proc of OSDIGoogle Scholar
  17. 17.
    Dedicated Server, Managed Hosting, Web Hosting by Rackspace Hosting, http://www.rackspace.com
  18. 18.
    FlexiScale Cloud Comp and Hosting, www.flexiscale.com
  19. 19.
    Ghemawat S, Gobioff H, Leung S-T (2003) The Google file system. In: Proc of SOSP, October 2003Google Scholar
  20. 20.
    Google App Engine, URL http://code.google.com/appengine
  21. 21.
    Greenberg A, Jain N et al (2009) VL2: a scalable and flexible data center network. In: Proc SIGCOMMGoogle Scholar
  22. 22.
    Guo C et al (2008) DCell: a scalable and fault-tolerant network structure for data centers. In: Proc SIGCOMMGoogle Scholar
  23. 23.
    Guo C, Lu G, Li D et al (2009) BCube: a high performance, server-centric network architecture for modular data centers. In: Proc SIGCOMMGoogle Scholar
  24. 24.
    Hadoop Distributed File System, hadoop.apache.org/hdfs
  25. 25.
    Hadoop MapReduce, hadoop.apache.org/mapreduce
  26. 26.
    Hamilton J (2009) Cooperative expendable micro-slice servers (CEMS): low cost, low power servers for Internet-scale services In: Proc of CIDRGoogle Scholar
  27. 27.
    IEEE P802.3az Energy Efficient Ethernet Task Force, www.ieee802.org/3/az
  28. 28.
    Kalyvianaki E et al (2009) Self-adaptive and self-configured CPU resource provisioning for virtualized servers using Kalman filters. In: Proc of international conference on autonomic computingGoogle Scholar
  29. 29.
    Kambatla K et al (2009) Towards optimizing Hadoop provisioning in the cloud. In: Proc of HotCloudGoogle Scholar
  30. 30.
    Kernal Based Virtual Machine, www.linux-kvm.org/page/MainPage
  31. 31.
    Krautheim FJ (2009) Private virtual infrastructure for cloud computing. In: Proc of HotCloudGoogle Scholar
  32. 32.
    Kumar S et al (2009) vManage: loosely coupled platform and virtualization management in data centers. In: Proc of international conference on cloud computingGoogle Scholar
  33. 33.
    Li B et al (2009) EnaCloud: an energy-saving application live placement approach for cloud computing environments. In: Proc of international conf on cloud computingGoogle Scholar
  34. 34.
    Meng X et al (2010) Improving the scalability of data center networks with traffic-aware virtual machine placement. In: Proc INFOCOMGoogle Scholar
  35. 35.
    Mysore R et al (2009) PortLand: a scalable fault-tolerant layer 2 data center network fabric. In: Proc SIGCOMMGoogle Scholar
  36. 36.
    NIST Definition of Cloud Computing v15, csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
  37. 37.
    Osman S, Subhraveti D et al (2002) The design and implementation of zap: a system for migrating computing environments. In: Proc of OSDIGoogle Scholar
  38. 38.
    Padala P, Hou K-Y et al (2009) Automated control of multiple virtualized resources. In: Proc of EuroSysGoogle Scholar
  39. 39.
    Parkhill D (1966) The challenge of the computer utility. Addison-Wesley, ReadingGoogle Scholar
  40. 40.
    Patil S et al (2009) In search of an API for scalable file systems: under the table or above it? HotCloudGoogle Scholar
  41. 41.
  42. 42.
    Sandholm T, Lai K (2009) MapReduce optimization using regulated dynamic prioritization. In: Proc of SIGMETRICS/PerformanceGoogle Scholar
  43. 43.
    Santos N, Gummadi K, Rodrigues R (2009) Towards trusted cloud computing. In: Proc of HotCloudGoogle Scholar
  44. 44.
  45. 45.
    Sonnek J et al (2009) Virtual putty: reshaping the physical footprint of virtual machines. In: Proc of HotCloudGoogle Scholar
  46. 46.
    Srikantaiah S et al (2008) Energy aware consolidation for cloud computing. In: Proc of HotPowerGoogle Scholar
  47. 47.
    Urgaonkar B et al (2005) Dynamic provisioning of multi-tier Internet applications. In: Proc of ICACGoogle Scholar
  48. 48.
    Valancius V, Laoutaris N et al (2009) Greening the Internet with nano data centers. In: Proc of CoNextGoogle Scholar
  49. 49.
    Vaquero L, Rodero-Merino L, Caceres J, Lindner M (2009) A break in the clouds: towards a cloud definition. ACM SIGCOMM computer communications reviewGoogle Scholar
  50. 50.
    Vasic N et al (2009) Making cluster applications energy-aware. In: Proc of automated ctrl for datacenters and cloudsGoogle Scholar
  51. 51.
  52. 52.
    VMWare ESX Server, www.vmware.com/products/esx
  53. 53.
  54. 54.
    Wood T et al (2007) Black-box and gray-box strategies for virtual machine migration. In: Proc of NSDIGoogle Scholar
  55. 55.
    XenSource Inc, Xen, www.xensource.com
  56. 56.
    Zaharia M et al (2009) Improving MapReduce performance in heterogeneous environments. In: Proc of HotCloudGoogle Scholar
  57. 57.
    Zhang Q et al (2007) A regression-based analytic model for dynamic resource provisioning of multi-tier applications. In: Proc ICACGoogle Scholar

Copyright information

© The Brazilian Computer Society 2010

Authors and Affiliations

  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations