Sankhya A

pp 1–15 | Cite as

Lindley Power Series Distributions

  • Yuancheng Si
  • Saralees NadarajahEmail author


Gui et al. (2017) proposed the Lindley geometric distribution, derived its properties including estimation issues and illustrated a data application. We introduce a new family of distributions containing the Lindley geometric distribution as a particular case. The new family is shown to provide significantly better fits. We also point out errors in various properties derived by Gui et al. (2017).


Estimation Moments Order statistics. 

AMS (2000) subject classification

Primary 62E99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the Editor and the referee for careful reading and comments which greatly improved the paper.


  1. Abd El-Monsef, M.M.E. (2016). A new Lindley distribution with location parameter. Commun. Stat.—Theory Methods 45, 5204–5219.MathSciNetCrossRefGoogle Scholar
  2. Abd El-Monsef, M.M.E., Hassanein, W.A. and Kilany, N.M. (2017). Erlang-Lindley distribution. Commun. Stat.—Theory Methods 46, 9494–9506.MathSciNetCrossRefGoogle Scholar
  3. Abouammoh, A.M., Alshangiti, A.M. and Ragab, I.E. (2015). A new generalized Lindley distribution. J. Stat. Comput. Simul. 85, 3662–3678.MathSciNetCrossRefGoogle Scholar
  4. Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723.MathSciNetCrossRefGoogle Scholar
  5. Al-Babtain, A., Eid, A.M., Ahmed, A.N. and Merovci, F. (2015). The five parameter Lindley distribution. Pakistan J. Stat. 31, 363–384.MathSciNetGoogle Scholar
  6. Altun, G., Alizadeh, M., Altun, E. and Ozel, G. (2017). Odd Burr Lindley distribution with properties and applications. Hacettepe J. Math. Stat. 46, 255–276.MathSciNetzbMATHGoogle Scholar
  7. Asgharzadeh, A., Bakouch, H.S., Nadarajah, S. and Sharafi, F. (2016). A new weighted Lindley distribution with application. Brazil. J. Probab. Stat. 30, 1–27.MathSciNetCrossRefGoogle Scholar
  8. Asgharzadeh, A., Nadarajah, S. and Sharafi, F. (2017). Generalized inverse Lindley distribution with application to Danish fire insurance data. Commun. Stat.–Theory Methods 46, 5001–5021.MathSciNetCrossRefGoogle Scholar
  9. Bhati, D., Malik, M.A. and Vaman, H.J. (2015). Lindley-exponential distribution: properties and applications. Metron 73, 335–357.MathSciNetCrossRefGoogle Scholar
  10. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J. and Knuth, D.E. (1996). On the Lambert W function. Adv. Comput. Math. 5, 329–359.MathSciNetCrossRefGoogle Scholar
  11. Gui, W., Guo, L. and Zhang, H (2017). The complementary Lindley-geometric distribution and its application in lifetime analysis. Sankhyā B. Scholar
  12. Hassanein, W.A. and Elhaddad, T.A. (2016). Truncated Lindley gamma distribution. Pakistan J. Stat. 32, 227–246.MathSciNetGoogle Scholar
  13. Irshad, M.R. and Maya, R. (2017). Extended version of generalised Lindley distribution. South African Stat. J. 51, 19–44.MathSciNetzbMATHGoogle Scholar
  14. Jodra, P. (2010). Computer generation of random variables with Lindley or Poisson-Lindley distribution via the Lambert W function. Math. Comput. Simul. 81, 851–859.MathSciNetCrossRefGoogle Scholar
  15. Kus, C. (2007). A new lifetime distribution. Comput. Stat. Data Anal. 51, 4497–4509.MathSciNetCrossRefGoogle Scholar
  16. Lindley, D. (1958). Fiducial distributions and Bayes’ theorem. J. R. Stat. Soc. B 20, 102–107.MathSciNetzbMATHGoogle Scholar
  17. Mishra, A. and Sah, B.K. (2016). A generalized exponential-Lindley distribution. World Scientific Publishers, Hackensack, p. 229–238.Google Scholar
  18. Nedjar, S. and Zeghdoudi, H. (2016). On gamma Lindley distribution: properties and simulations. J. Comput. Appl. Math. 298, 167–174.MathSciNetCrossRefGoogle Scholar
  19. Noack, A. (1950). A class of random variables with discrete distributions. Ann. Math. Stat. 21, 127–132.MathSciNetCrossRefGoogle Scholar
  20. Oluyede, B.O. and Yang, T. (2015). A new class of generalized Lindley distributions with applications. J. Stat. Comput. Simul. 85, 2072–2100.MathSciNetCrossRefGoogle Scholar
  21. Pararai, M., Warahena-Liyanage, G. and Oluyede, B.O. (2017). Exponentiated power Lindley-Poisson distribution: properties and applications. Commun. Stat.—Theory Methods 46, 4726–4755.MathSciNetCrossRefGoogle Scholar
  22. R Development Core Team (2017). A Language and Environment for Statistical Computing: R Foundation for Statistical Computing. Vienna, Austria.Google Scholar
  23. Reyes, J., Venegas, O. and Gomez, H.W. (2017). Modified slash Lindley distribution. J. Probab. Stat. 2017, Article ID 6303462.MathSciNetCrossRefGoogle Scholar
  24. Shanker, R. and Mishra, A. (2016). A quasi Poisson-Lindley distribution. J. Indian Stat. Assoc. 54, 113–125.MathSciNetGoogle Scholar
  25. Sharma, V.K., Singh, S.K., Singh, U. and Merovci, F. (2016). The generalized inverse Lindley distribution: a new inverse statistical model for the study of upside-down bathtub data. Commun. Stat.—Theory Methods 45, 5709–5729.MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Statistical Institute 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations