Advertisement

Sankhya A

pp 1–15 | Cite as

On a Simple Identity for the Conditional Expectation of Orthogonal Polynomials

  • Thomas A. Severini
Article
  • 9 Downloads

Abstract

Consider a two-dimensional random vector (X, Y )T. Let Q0, Q1,… denote orthogonal polynomials with respect to the marginal distribution of X and let P0, P1,… denote orthogonal polynomials with respect to the marginal distribution of Y. In this paper, identities of the form E[Pn(Y )|X] = anQn(X), for constants a0, a1,… are considered and necessary and sufficient conditions for this type of identity to hold are given,. The application of the identity to the maximal correlation of two random variables and to the L2 completeness of a bivariate distribution are discussed.

Keywords

Bivariate Dirichlet distribution Bivariate gamma distribution Jacobi polynomials L2 completeness Maximal correlation Mehler’s identity 

AMS (2000) subject classification.

Primary 42C05 Secondary 60E05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

I would like to thank the associate editor and referees for a number of useful comments.

References

  1. Andrews, D.W.K. (2017). Examples of L 2-complete and boundedly-complete distributions. J. Econ. 199, 213–220.CrossRefzbMATHGoogle Scholar
  2. Andrews, G.E., Askey, R. and Roy, R. (1999). Special Functions. Cambridge University Press, Cambridge.CrossRefzbMATHGoogle Scholar
  3. Gebelein, H. (1941). Das statistische Problem der Korrelation als Variations und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung. Z. Angew. Math. Mech. 21, 364–379.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Granger, C.W.J. and Newbold, P. (1976). Forecasting transformed series. J. Roy Statist. Soc. B 38, 189–203.MathSciNetzbMATHGoogle Scholar
  5. Johnson, N.L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York.zbMATHGoogle Scholar
  6. Lancaster, H.O. (1957). Some properties of the bivariate normal distribution considered in the form of a contingency table. Biometrika 44, 189–203.CrossRefzbMATHGoogle Scholar
  7. Lancaster, H.O. (1958). The structure of bivariate distributions. Ann. Math. Stat. 29, 719–736.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Patel, J.K. and Read, C.B. (1996). Handbook of the Normal Distribution, 2nd edn. Marcel Dekker, New York.zbMATHGoogle Scholar
  9. Severini, T.A. and Tripathi, G. (2006). Some identification issues in nonparametric linear models with endogenous regressors. Economet. Theor. 22, 258–278.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Szegö, G (1975). Orthogonal Polynomials. American Mathematical Society, Providence.zbMATHGoogle Scholar
  11. Temme, N.M. (1996). Special Functions. Wiley, New York.CrossRefzbMATHGoogle Scholar

Copyright information

© Indian Statistical Institute 2019

Authors and Affiliations

  1. 1.Department of StatisticsNorthwestern UniversityEvanstonUSA

Personalised recommendations