Sankhya A

, Volume 72, Issue 2, pp 331–343 | Cite as

Convergence properties of Kemp’s q-binomial distribution

Article

Abstract

We consider Kemp’s q-analogue of the binomial distribution. Several convergence results involving the classical binomial, the Heine, the discrete normal, and the Poisson distribution are established. Some of them are q-analogues of classical convergence properties. From the results about distributions, we deduce some new convergence results for (q-)Krawtchouk and q-Charlier polynomials. Besides elementary estimates, we apply Mellin transform asymptotics.

Keywords and phrases

q-binomial distribution discrete normal distribution Heine distribution q-Krawtchouk polynomials q-Charlier polynomials Mellin transform limit theorems 

AMS (2000) subject classification

Primary 60F05 secondary 33D15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benkherouf, L. and Bather, J.A. (1988). Oil exploration: sequential decisions in the face of uncertainty. J. Appl. Probab., 25, 529–543.MATHCrossRefMathSciNetGoogle Scholar
  2. Christiansen, J.S. and Koelink, E. (2006). Self-adjoint difference operators and classical solutions to the Stieltjes-Wigert moment problem. J. Approx. Theory, 140, 1–26.MATHCrossRefMathSciNetGoogle Scholar
  3. Flajolet, P., Gourdon, X. and Dumas, P. (1995). Mellin transforms and asymptotics: harmonic sums. Theoret. Comput. Sci., 144, 3–58.MATHCrossRefMathSciNetGoogle Scholar
  4. Gasper, G. and Rahman, M. (1990). Basic Hypergeometric Series. With a foreword by Richard Askey. Encyclopedia of Mathematics and its Applications, vol. 35. Cambridge University Press, Cambridge.MATHGoogle Scholar
  5. de Haan, L. and Ferreira, A. (2006). Extreme Value Theory. An Introduction. Springer, New York.MATHGoogle Scholar
  6. Johnson, N.L., Kemp, A.W. and Kotz, S. (2005). Univariate Discrete Distributions. Third edition. Wiley Series in Probability and Statistics. Wiley-Interscience, Hoboken, NJ.MATHGoogle Scholar
  7. Kemp, A. and Kemp, C. (1991). Weldon’s dice data revisited. Amer. Statist., 45, 216–222.CrossRefGoogle Scholar
  8. Kemp, A.W. (1992a). Heine-Euler extensions of the Poisson distribution. Comm. Statist. Theory Methods, 21, 571–588.MATHCrossRefMathSciNetGoogle Scholar
  9. Kemp, A.W. (1992b). Steady-state Markov chain models for the Heine and Euler distributions. J. Appl. Probab., 29, 869–876.MATHCrossRefMathSciNetGoogle Scholar
  10. Kemp, A.W. (2002). Certain q-analogues of the binomial distribution. Sankhyā Ser. A, 64, 293–305. Selected articles from San Antonio Conference in honour of C. R. Rao (San Antonio, TX, 2000).MATHMathSciNetGoogle Scholar
  11. Kemp, A.W. (2003). Characterizations involving U|(U + V = m) for certain discrete distributions. J. Statist. Plann. Inference, 109, 31–41.MATHCrossRefMathSciNetGoogle Scholar
  12. Kemp, A.W. and Newton, J. (1990). Certain state-dependent processes for dichotomised parasite populations. J. Appl. Probab., 27, 251–258.MATHCrossRefMathSciNetGoogle Scholar
  13. Koekoek, R. and Swarttouw, R.F. (1998). The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Technical Report, 98-17, Delft University of Technology. Available at http://fa.its.tudelft.nl/~koekoek/askey.html.
  14. Rao, C.R. and Shanbhag, D.N. (1994). Choquet-Deny Type Functional Equations with Applications to Stochastic Models. John Wiley & Sons Ltd., Chichester.MATHGoogle Scholar
  15. Szabłowski, P. (2001). Discrete normal distribution and its relationship with Jacobi theta functions. Statist. Probab. Lett., 52, 289–299.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Indian Statistical Institute 2010

Authors and Affiliations

  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.Graz University of TechnologyGrazAustria
  3. 3.Vienna University of TechnologyViennaAustria
  4. 4.Graz University of TechnologyGrazAustria

Personalised recommendations