Advertisement

EPMA Journal

, Volume 10, Issue 1, pp 13–20 | Cite as

The circadian expression of osteogenic factors in periodontal tissue loading mechanical force: new concepts of the personalized orthodontic care

  • Xu Qin
  • Qilin Li
  • Weimin Chen
  • Yumin Bai
  • Babak Baban
  • Jing MaoEmail author
Research
  • 26 Downloads

Abstract

Objective

The need for orthodontic treatment continues to increase. Strategies that shorten the treatment course and reduce discomfort are most welcome in clinic. Circadian rhythm plays important role in various physiological processes, including bone formation. This study intended to depict a possible circadian releasing property of the osteogenic factors within the periodontal tissue during orthodontic treatment, which may direct a more efficient and satisfactory orthodontic treatment to the patient.

Methods

Primary periodontal ligament cells (PDLCs) were obtained from the Sprague-Dawley (SD) rats. An equibiaxial strain value of 12% was applied on rat PDLCs (rPDLCs). After 2 h stimuli of 10−7 M dexamethasone (DX), the osteogenic genes’ expressions were detected by real-time polymerase chain reaction (RT-PCR) at Zeitgeber times 0, 4, 8, 12, 16, 20, and 24. An orthodontic appliance was placed on 45 SD rats. Animals were maintained under 12-h light/dark periods and euthanized at 9 time points over the diurnal cycle. The orthodontic sensitive tissues of the mesial root of the maxillary first molar were collected for RT-PCR and immunohistological assay.

Results

The rPDLCs displayed typical fibroblastic spindle shape, and subcultured steadily in vitro. Induced by DX, the mRNA expression of Col-1, OPN, and IBSP within the loaded/unloaded rPDLCs oscillated as that of the main clock gene Per-1. The osteogenic genes’ expressions as well as the protein releases sustained a circadian oscillation trend in vivo.

Conclusions

This study indicates the existence of a circadian rhythm of the osteogenic factors within the orthodontic sensitive tissues, which highlights the importance of precise timing of force loading in further orthodontic treatment. Thus, a periodicity pattern of orthodontic traction at night may prove a more efficient tooth movement while minimizing the treatment window and discomfort complains.

Keywords

Circadian rhythm Orthodontic tooth movement Osteogenesis Animal study Mechanical force Predictive preventive personalised medicine Prognosis Biomarker panel Expression pattern Animal model Personalized orthodonic care 

Notes

Acknowledgements

The authors would like to thank the Tongji Medical College Animal Center, Anyi Li and the Stomatology faculty of Tongji Medical College Zuojiao Yin for technical support.

Funding

The study was funded by the National Science Foundation of China (No. 81170986 and No.81800891).

Compliance with ethical standards

All procedures concerning animal use were conformed to the guidelines of the Animal Ethics Committee of Huazhong University of Science and Technology (Wuhan, China)

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23.CrossRefGoogle Scholar
  2. 2.
    Baloul SS, Gerstenfeld LC, Morgan EF, Carvalho RS, Van Dyke TE, Kantarci A. Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement. Am J Orthod Dentofac Orthop. 2011;139(4 Suppl):S83–101.CrossRefGoogle Scholar
  3. 3.
    Cao H, Kou X, Yang R, Liu D, Wang X, Song Y, et al. Force-induced Adrb2 in periodontal ligament cells promotes tooth movement. J Dent Res. 2014;93(11):1163–9.CrossRefGoogle Scholar
  4. 4.
    Chen J, Li W, Swain MV, Ali Darendeliler M, Li Q. A periodontal ligament driven remodeling algorithm for orthodontic tooth movement. J Biomech. 2014;47(7):1689–95.CrossRefGoogle Scholar
  5. 5.
    Zheng L, Seon YJ, Mourao MA, Schnell S, Kim D, Harada H, et al. Circadian rhythms regulate amelogenesis. Bone. 2013;55(1):158–65.CrossRefGoogle Scholar
  6. 6.
    Komoto S, Kondo H, Fukuta O, Togari A. Comparison of beta-adrenergic and glucocorticoid signaling on clock gene and osteoblast-related gene expressions in human osteoblast. Chronobiol Int. 2012;29(1):66–74.CrossRefGoogle Scholar
  7. 7.
    Cavalcanti P, Campos T, Araujo J. Actigraphic analysis of the sleep-wake cycle and physical activity level in patients with stroke: implications for clinical practice. Chronobiol Int. 2012;29(9):1267–72.CrossRefGoogle Scholar
  8. 8.
    Fujihara Y, Kondo H, Noguchi T, Togari A. Glucocorticoids mediate circadian timing in peripheral osteoclasts resulting in the circadian expression rhythm of osteoclast-related genes. Bone. 2014;61:1–9.CrossRefGoogle Scholar
  9. 9.
    Wu X, Yu G, Parks H, Hebert T, Goh BC, Dietrich MA, et al. Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure. Bone. 2008;42(5):861–70.CrossRefGoogle Scholar
  10. 10.
    Yu X, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, Kashiwada M, et al. TH17 cell differentiation is regulated by the circadian clock. Science. 2013;342(6159):727–30.CrossRefGoogle Scholar
  11. 11.
    Janich P, Toufighi K, Solanas G, Luis NM, Minkwitz S, Serrano L, et al. Human epidermal stem cell function is regulated by circadian oscillations. Cell Stem Cell. 2013;13(6):745–53.CrossRefGoogle Scholar
  12. 12.
    Miyoshi K, Igarashi K, Saeki S, Shinoda H, Mitani H. Tooth movement and changes in periodontal tissue in response to orthodontic force in rats vary depending on the time of day the force is applied. Eur J Orthod. 2001;23(4):329–38.CrossRefGoogle Scholar
  13. 13.
    Gan EH, Quinton R. Physiological significance of the rhythmic secretion of hypothalamic and pituitary hormones. Prog Brain Res. 2010;181:111–26.CrossRefGoogle Scholar
  14. 14.
    Qin X, Raj RM, Liao XF, Shi W, Ma B, Gong SQ, et al. Using rigidly fixed autogenous tooth graft to repair bone defect: an animal model. Dent Traumatol. 2014;30(5):380–4.CrossRefGoogle Scholar
  15. 15.
    Qin X, Zou F, Chen W, Xu Y, Ma B, Huang Z, et al. Demineralized dentin as a semi-rigid barrier for guiding periodontal tissue regeneration. J Periodontol. 2015;86(12):1370–9.CrossRefGoogle Scholar
  16. 16.
    Kato T, Hattori K, Deguchi T, Katsube Y, Matsumoto T, Ohgushi H, et al. Osteogenic potential of rat stromal cells derived from periodontal ligament. J Tissue Eng Regen Med. 2011;5(10):798–805.CrossRefGoogle Scholar
  17. 17.
    Wescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC. Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res. 2007;86(12):1212–6.CrossRefGoogle Scholar
  18. 18.
    Qin X, Hoda MN, Susin C, Wheeler JN, Marshall B, Perry L, et al. Increased innate lymphoid cells in periodontal tissue of the murine model of periodontitis: the role of AMP-activated protein kinase and relevance for the human condition. Front Immunol. 2017;8:922.CrossRefGoogle Scholar
  19. 19.
    Usumi-Fujita R, Hosomichi J, Ono N, Shibutani N, Kaneko S, Shimizu Y, et al. Occlusal hypofunction causes periodontal atrophy and VEGF/VEGFR inhibition in tooth movement. Angle Orthod. 2013;83(1):48–56.CrossRefGoogle Scholar
  20. 20.
    Franzen TJ, Zahra SE, El-Kadi A, Vandevska-Radunovic V. The influence of low-level laser on orthodontic relapse in rats. Eur J Orthod. 2015;37(1):111–7.CrossRefGoogle Scholar
  21. 21.
    Qin X, Liu JY, Wang T, Pashley DH, Al-Hashim AH, Abdelsayed R, et al. Role of indoleamine 2,3-dioxygenase in an inflammatory model of murine gingiva. J Periodontal Res. 2017;52(1):107–13.CrossRefGoogle Scholar
  22. 22.
    Qin X, Liu JY, Abdelsayed R, Shi X, Yu JC, Mozaffari MS, et al. The status of glucocorticoid-induced leucine zipper protein in the salivary glands in Sjogren’s syndrome: predictive and prognostic potentials. EPMA J. 2015;7:3.CrossRefGoogle Scholar
  23. 23.
    Zhang ZC, Wang YG, Li L, Yin HD, Li DY, Wang Y, et al. Circadian clock genes are rhythmically expressed in specific segments of the hen oviduct. Poult Sci. 2016;95(7):1653–9.CrossRefGoogle Scholar
  24. 24.
    Shen T, Qiu L, Chang H, Yang Y, Jian C, Xiong J, et al. Cyclic tension promotes osteogenic differentiation in human periodontal ligament stem cells. Int J Clin Exp Pathol. 2014;7(11):7872–80.Google Scholar
  25. 25.
    Witt-Enderby PA, Slater JP, Johnson NA, Bondi CD, Dodda BR, Kotlarczyk MP, et al. Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice. J Pineal Res. 2012;53(4):374–84.CrossRefGoogle Scholar
  26. 26.
    Ratajczak J, Hilkens P, Gervois P, Wolfs E, Jacobs R, Lambrichts I, et al. Angiogenic capacity of periodontal ligament stem cells pretreated with deferoxamine and/or fibroblast growth factor-2. PLoS One. 2016;11(12):e0167807.CrossRefGoogle Scholar
  27. 27.
    Yamada S, Saeki S, Takahashi I, Igarashi K, Shinoda H, Mitani H. Diurnal variation in the response of the mandible to orthopedic force. J Dent Res. 2002;81(10):711–5.CrossRefGoogle Scholar
  28. 28.
    Boas Nogueira AV, Chaves de Souza JA, Kim YJ, Damiao de Sousa-Neto M, Chan Cirelli C, Cirelli JA. Orthodontic force increases interleukin-1beta and tumor necrosis factor-alpha expression and alveolar bone loss in periodontitis. J Periodontol. 2013;84(9):1319–26.CrossRefGoogle Scholar
  29. 29.
    Leiker BJ, Nanda RS, Currier GF, Howes RI, Sinha PK. The effects of exogenous prostaglandins on orthodontic tooth movement in rats. Am J Orthod Dentofac Orthop. 1995;108(4):380–8.CrossRefGoogle Scholar
  30. 30.
    King GJ, Keeling SD, McCoy EA, Ward TH. Measuring dental drift and orthodontic tooth movement in response to various initial forces in adult rats. Am J Orthod Dentofac Orthop. 1991;99(5):456–65.CrossRefGoogle Scholar
  31. 31.
    Gonzales C, Hotokezaka H, Yoshimatsu M, Yozgatian JH, Darendeliler MA, Yoshida N. Force magnitude and duration effects on amount of tooth movement and root resorption in the rat molar. Angle Orthod. 2008;78(3):502–9.CrossRefGoogle Scholar
  32. 32.
    Gonzales C, Hotokezaka H, Arai Y, Ninomiya T, Tominaga J, Jang I, et al. An in vivo 3D micro-CT evaluation of tooth movement after the application of different force magnitudes in rat molar. Angle Orthod. 2009;79(4):703–14.CrossRefGoogle Scholar
  33. 33.
    Gafni Y, Ptitsyn AA, Zilberman Y, Pelled G, Gimble JM, Gazit D. Circadian rhythm of osteocalcin in the maxillomandibular complex. J Dent Res. 2009;88(1):45–50.CrossRefGoogle Scholar
  34. 34.
    McElderry JD, Zhao G, Khmaladze A, Wilson CG, Franceschi RT, Morris MD. Tracking circadian rhythms of bone mineral deposition in murine calvarial organ cultures. J Bone Miner Res. 2013;28(8):1846–54.CrossRefGoogle Scholar
  35. 35.
    Bai YM, Mao J. Correlation between circadian rhythm and rapid palatal expansion. Zhonghua Kou Qiang Yi Xue Za Zhi. 2010;45(11):655–8.Google Scholar
  36. 36.
    Kunin A, Polivka J Jr, Moiseeva N, Golubnitschaja O. “Dry mouth” and “Flammer” syndromes-neglected risks in adolescents and new concepts by predictive, preventive and personalised approach. EPMA J. 2018;9(3):307–17.CrossRefGoogle Scholar
  37. 37.
    Lechner J, Noumbissi S, von Baehr V. Titanium implants and silent inflammation in jawbone-a critical interplay of dissolved titanium particles and cytokines TNF-alpha and RANTES/CCL5 on overall health? EPMA J. 2018;9(3):331–43.CrossRefGoogle Scholar

Copyright information

© European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2019

Authors and Affiliations

  • Xu Qin
    • 1
  • Qilin Li
    • 1
  • Weimin Chen
    • 1
  • Yumin Bai
    • 1
    • 2
  • Babak Baban
    • 3
  • Jing Mao
    • 1
    Email author
  1. 1.Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of StomatologyFujian Medical UniversityFuzhouChina
  3. 3.Department of Oral Biology, College of Dental MedicineAugusta UniversityAugustaUSA

Personalised recommendations