Advertisement

EPMA Journal

, Volume 10, Issue 3, pp 249–259 | Cite as

The predictive potential of altered spontaneous brain activity patterns in diabetic retinopathy and nephropathy

  • Yu Wang
  • Yi Shao
  • Wen-Qing Shi
  • Lei Jiang
  • Xiao-yu Wang
  • Pei-Wen Zhu
  • Qing Yuan
  • Ge GaoEmail author
  • Jin-Lei LvEmail author
  • Gong-Xian Wang
Research
  • 16 Downloads

Abstract

Objective

The amplitude of low-frequency fluctuation (ALFF) fMRI technique was used to study the changes of spontaneous brain activity in patients with diabetic retinopathy and nephropathy (DRN), and to explore the application of ALFF technique in the potential prediction and the targeted prevention of diabetic microangiopathy.

Methods

Nineteen patients with diabetic retinopathy and nephropathy and 19 healthy controls (HCs) were matched for age and gender. Spontaneous cerebral activity variations were investigated using the ALFF technique. The average ALFF values of the DRN patients and the HCs were classified utilizing receiver operating characteristic (ROC) curves.

Results

In contrast to the results in the HCs, the patients with DRN had significantly higher ALFF values in the cerebellum (bilaterally in the posterior and anterior lobes) and the left inferior temporal gyrus, but the ALFF values of the bilateral medial frontal gyrus, right superior temporal gyrus, right middle frontal gyrus, left middle/inferior frontal gyrus, bilateral precuneus, and left inferior parietal lobule were lower. ROC curve analysis of each brain region showed the accuracy of AUC was excellent. However, the mean ALFF values in the different regions did not correlate with clinical performance. The subjects showed abnormal neuronal synchronization in many areas of the brain, which is consistent with cognitive and visual functional deficits.

Conclusion

Abnormal spontaneous activity was detected in many areas of the brain, which may provide useful information for understanding the pathology of DRN. Abnormal ALFF values of these brain regions may be of predictive value in the development of early DRN and be a targeted intervention indicator for individualized treatment of diabetic microvascular diseases.

Keywords

Predictive preventive personalized medicine ALFF fMRI Diabetic retinopathy Diabetic nephropathy Diabetic microvascular diseases Resting state Spontaneous brain activity 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

Not applicable.

Ethical approval

All the patients were informed about the purposes of the study and consequently have signed their “consent of the patient.” All investigations conformed to the principles outlined in the Declaration of Helsinki and were performed with permission by the responsible Ethics Committee of the First Affiliated Hospital of Nanchang University.

References

  1. 1.
    Vaziri K, Schwartz SG, Relhan N, Kishor KS, Flynn HW. New therapeutic approaches in diabetic retinopathy. Rev Diabet Stud. 2015;12(1–2):196–210.  https://doi.org/10.1900/RDS.2015.12.196.Google Scholar
  2. 2.
    Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614–8.  https://doi.org/10.1136/bjophthalmol-2011-300539.Google Scholar
  3. 3.
    Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350(1):48–58 10.1056/NEJMra021678.Google Scholar
  4. 4.
    Takagi H. Molecular mechanisms of retinal neovascularization in diabetic retinopathy. Int Congr. 2003;4(3):299.  https://doi.org/10.2169/internalmedicine.42.299.Google Scholar
  5. 5.
    Sagoo MK, Gnudi L. Diabetic nephropathy: is there a role for oxidative stress? Free Radic Biol Med. 2018;116:50–63.  https://doi.org/10.1016/j.freeradbiomed.2017.12.040.Google Scholar
  6. 6.
    Patel V, Shastri M, Gaur N, Jinwala P, Kadam AY. A study in prevalence of diabetic nephropathy in recently detected cases of type 2 diabetes mellitus as evidenced by altered creatinine clearance, urinary albumin and serum creatinine, with special emphasis on hypertension, hypercholesterolemia and obesity. Int J Adv Med. 2018;5(2):351–5.  https://doi.org/10.18203/2349-3933.ijam20180999.Google Scholar
  7. 7.
    Reutens AT. Epidemiology of diabetic kidney disease. Med Clin North Am. 2013;97(1):1–18.  https://doi.org/10.1016/j.mcna.2012.10.001.Google Scholar
  8. 8.
    Hamat I, Abderraman GM, Cisse MM, Youssouf M, Djafar MS, Mbainguinam D, et al. Profile of diabetic nephropathy at the National Reference General Hospital of N'Djamena (Chad). Pan Afr Med J. 2016;24:193.  https://doi.org/10.11604/pamj.2016.24.193.8415.Google Scholar
  9. 9.
    Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes. 2000;49(9):1399–408.  https://doi.org/10.2337/diabetes.49.9.1399.Google Scholar
  10. 10.
    Saunders WB. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49(2):S12–154.  https://doi.org/10.1053/j.ajkd.2006.12.005.Google Scholar
  11. 11.
    Saira C, Sumon R, Andre P, Sayon R. Tight glycemic control regulates fibronectin expression and basement membrane thickening in retinal and glomerular capillaries of diabetic rats. Invest Ophthalmol Vis Sci. 2009;50(2):943–9.  https://doi.org/10.1167/iovs.08-2377.Google Scholar
  12. 12.
    Kramer CK, Retnakaran R. Concordance of retinopathy and nephropathy over time in type 1 diabetes: an analysis of data from the diabetes control and complications trial. Diabet Med. 2013;30(11):1333–41.  https://doi.org/10.1111/dme.12296.Google Scholar
  13. 13.
    Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, et al. Diabetic microvascular disease: an endocrine society scientific statement. J Clin Endocrinol Metab. 2017;102(12):4343–410.  https://doi.org/10.1210/jc.2017-01922.Google Scholar
  14. 14.
    Pearce I, Simó R, Lövestam-Adrian M, Wong DT, Evans M. Association between diabetic eye disease and other complications of diabetes: implications for care. A systematic review. Diabetes Obes Metab. 2019;21(3):467–78.  https://doi.org/10.1111/dom.13550.Google Scholar
  15. 15.
    Jeng CJ, Hsieh YT, Yang CM, Yang CH, Lin CL, Wang IJ. Diabetic retinopathy in patients with diabetic nephropathy: development and progression. PLoS One. 2016;11(8):e0161897.  https://doi.org/10.1371/journal.pone.0161897.Google Scholar
  16. 16.
    Bekiesińska-Figatowska M, Helwich E, Rutkowska M, Stankiewicz J, Terczyńska I. Magnetic resonance imaging of neonates in the magnetic resonance compatible incubator. Arch Med Sci. 2016;12(5):1064–70.  https://doi.org/10.5114/aoms.2016.61913.Google Scholar
  17. 17.
    Liu H, Wang X. Correlation of iron deposition and change of gliocyte metabolism in the basal ganglia region evaluated using magnetic resonance imaging techniques: an in vivo study. Arch Med Sci. 2016;12(1):163–71.  https://doi.org/10.5114/aoms.2016.57593.Google Scholar
  18. 18.
    Dai XJ, Liu CL, Zhou RL, Gong HH, Wu B, Gao L, et al. Long-term sleep deprivation decreases the default spontaneous activity and connectivity pattern in healthy male subjects: a resting-state fMRI study. Neuropsychiatr Dis Treat. 2015;11:761–72.  https://doi.org/10.2147/NDT.S78335.Google Scholar
  19. 19.
    Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci. 2010;4(19):19.  https://doi.org/10.3389/fnsys.2010.00019.Google Scholar
  20. 20.
    Zhang Y, Zhu C, Chen H, Duan X, Lu F, Li M, et al. Frequency-dependent alterations in the amplitude of low-frequency fluctuations in social anxiety disorder. J Affect Disord. 2015;174:329–35.  https://doi.org/10.1016/j.jad.2014.12.001.Google Scholar
  21. 21.
    Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, et al. The oscillating brain: complex and reliable. Neuroimage. 2010;49(2):1432–45.  https://doi.org/10.1016/j.neuroimage.2009.09.037.Google Scholar
  22. 22.
    Huang X, Cai FQ, Hu PH, Zhong YL, Zhang Y, Wei R, et al. Disturbed spontaneous brain- activity pattern in patients with optic neuritis using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study. Neuropsychiatr Dis Treat. 2015;11:3075–83.  https://doi.org/10.2147/NDT.S92497.Google Scholar
  23. 23.
    Huang X, Zhong YL, Zeng XJ, Zhong YL, Zhang Y, Wei R, et al. Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study. Neuropsychiatr Dis Treat. 2015;11:1877–83.  https://doi.org/10.2147/NDT.S87596.Google Scholar
  24. 24.
    Tan G, Huang X, Zhang Y, Wu AH, Zhong YL, Wu K, et al. A functional MRI study of altered spontaneous brain activity pattern in patients with congenital comitant strabismus using amplitude of low-frequency fluctuation. Neuropsychiatr Dis Treat. 2016;12:1243–50.  https://doi.org/10.2147/NDT.S104756.Google Scholar
  25. 25.
    Liang M, Xie B, Yang H, Yu L, Yin X, Wei L, et al. Distinct patterns of spontaneous brain activity between children and adults with anisometropic amblyopia: a resting-state fMRI study. Graefes Arch Clin Exp Ophthalmol. 2016;254(3):569–76.  https://doi.org/10.1007/s00417-015-3117-9.Google Scholar
  26. 26.
    Alzner E. Bericht vom XXIX. International Congress of Ophthalmology — The World Meeting of Ophthalmologists, 21.–25. April 2002, Sydney — Australien. Spektrum Der Augenheilkunde. 2002;16(4):189–90.  https://doi.org/10.1007/BF03164300.Google Scholar
  27. 27.
    Satterthwaite TD, Elliott MA, Gerraty RT, et al. An improved frame- work for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage. 2013;64:240–56.  https://doi.org/10.1016/j.neuroimage.2012.08.052.Google Scholar
  28. 28.
    Yan CG, Cheung B, Kelly C, Gerraty RT, Ruparel K, Loughead J, et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage. 2013;76:183–201.  https://doi.org/10.1016/j.neuroimage.2013.03.004.Google Scholar
  29. 29.
    Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102(27):9673–8.  https://doi.org/10.1073/pnas.0504136102.Google Scholar
  30. 30.
    Li HJ, Dai XJ, Gong HH, Nie X, Zhang W, Peng DC. Aberrant spontaneous low-frequency brain activity in male patients with severe obstructive sleep apnea revealed by resting-state functional MRI. Neuropsychiatr Dis Treat. 2015;11:207–14.  https://doi.org/10.2147/NDT.S73730.Google Scholar
  31. 31.
    Dai XJ, Peng DC, Gong HH, Wan AL, Nie X, Li HJ, et al. Altered intrinsic regional brain spontaneous activity and subjective sleep quality in patients with chronic primary insomnia: a resting-state fMRI study. Neuropsychiatr Dis Treat. 2014;10:2163–75.  https://doi.org/10.2147/NDT.S69681.Google Scholar
  32. 32.
    Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect. 2012;2(1):25–32.  https://doi.org/10.1089/brain.2012.0080.Google Scholar
  33. 33.
    Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29(2):83–91.  https://doi.org/10.1016/j.braindev.2006.07.002.Google Scholar
  34. 34.
    Tomino Y, Gohda T. The prevalence and management of diabetic nephropathy in Asia. Kidney Dis. 2015;1(1):52–60.  https://doi.org/10.1159/000381757.Google Scholar
  35. 35.
    Shanbhogue VV, Hansen S, Frost M, Brixen K, Hermann AP. Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinol. 2017;5(10):827–38.  https://doi.org/10.1016/S2213-8587(17)30134-1.Google Scholar
  36. 36.
    Thapa R, Twyana SN, Paudyal G, Khanal S, van Nispen R, Tan S, et al. Prevalence and risk factors of diabetic retinopathy among an elderly population with diabetes in Nepal: the Bhaktapur Retina Study. Clin Ophthalmol. 2018;12:561–8.  https://doi.org/10.2147/OPTH.S157560.Google Scholar
  37. 37.
    Zhao H, Ma L, Yan M, Wang Y, Zhao TT, Zhang HJ, et al. Association between MYH9 and APOL1 gene polymorphisms and the risk of diabetic kidney disease in patients with type 2 diabetes in a Chinese Han population. J Diabetes Res. 2018;1:1–6.  https://doi.org/10.1155/2018/5068578.Google Scholar
  38. 38.
    Demerdash FE, Refaie W, Allakany R, Tantawy S, Dawood E. Diabetic retinopathy: a predictor of coronary artery disease. Egyptian Heart J. 2012;64(2):63–8.  https://doi.org/10.1016/j.ehj.2011.08.006.Google Scholar
  39. 39.
    Bloomgarden ZT. Diabetic retinopathy and neuropathy. Diabetes Care. 2007;30(3):760.  https://doi.org/10.2337/dc07-zb03.Google Scholar
  40. 40.
    Guo MX, Dong HH, Zhang YT, Zhang Q, Yin XH. ALFF changes in brain areas of human with high myopia revealed by resting-state functional MRI. Biomed Eng Inf. 2010;1(1):91–4.  https://doi.org/10.1109/BMEI.2010.5639490.
  41. 41.
    Tan G, Huang X, Ye L, Wu AH, He LX, Zhong YL, et al. Altered spontaneous brain activity patterns in patients with unilateral acute open globe injury using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study. Neuropsychiatr Dis Treat. 2016;12(1):2015–20.  https://doi.org/10.2147/NDT.S110539.Google Scholar
  42. 42.
    Pan ZM, Li HJ, Bao J, Jiang N, Yuan Q, Freeberg S, et al. Altered intrinsic brain activities in patients with acute eye pain using amplitude of low-frequency fluctuation: a resting-state fMRI study. Neuropsychiatr Dis Treat. 2018;14:251–7.  https://doi.org/10.2147/NDT.S150051.Google Scholar
  43. 43.
    Li Q, Xin H, Lei Y, Wei R, Zhang Y, Zhong YL, et al. Altered spontaneous brain activity pattern in patients with late monocular blindness in middle-age using amplitude of low-frequency fluctuation: a resting-state functional MRI study. Clin Interv Aging. 2016;11:1773–80.  https://doi.org/10.2147/CIA.S117292.Google Scholar
  44. 44.
    Talati A, Hirsch J. Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on “what,” “when,” and “where” related information: an fMRI study. J Cogn Neurosci. 2005;17:981–93.  https://doi.org/10.1162/0898929054475226.Google Scholar
  45. 45.
    Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol. 1985;54:714–34.  https://doi.org/10.1152/jn.1985.54.3.714.Google Scholar
  46. 46.
    Zald DH, McHugo M, Ray KL, Glahn DC, Eickhoff SB, Laird AR. Meta-analytic connectivity modeling reveals differential functional connectivity of the medial and lateral orbitofrontal cortex. Cereb Cortex. 2014;24(1):232–48.  https://doi.org/10.1093/cercor/bhs308.Google Scholar
  47. 47.
    Lemogne C, Delaveau P, Freton M, Guionnet S, Fossati P. Medial prefrontal cortex and the self in major depression. J Affect Disord. 2012;136(1–2):e1–e11.  https://doi.org/10.1016/j.jad.2010.11.034.Google Scholar
  48. 48.
    Garcia A, Luedke A, Dowds E, Tam A, Goel A, Fernandez J. Precuneus volumes and cognitive tests in older adults. Alzheimers Dement. 2013;9(4):P795.  https://doi.org/10.1016/j.jalz.2013.05.1638.Google Scholar
  49. 49.
    Liu Y, Li L, Li B, Feng N, Li L, Zhang X, et al. Decreased triple network connectivity in patients with recent onset post-traumatic stress disorder after a single prolonged trauma exposure. Sci Rep. 2017;7(1):12625.  https://doi.org/10.1038/s41598-017-12964-6.Google Scholar
  50. 50.
    Vicentini JE, Weiler M, Almeida SRM, de Campos BM, Valler L, Li LM. Depression and anxiety symptoms are associated to disruption of default mode network in subacute ischemic stroke. Brain Imaging Behav. 2017;11(6):1571–80.  https://doi.org/10.1007/s11682-016-9605-7.Google Scholar
  51. 51.
    Sieu N, Katon W, Lin EH, Russo J, Ludman E, Ciechanowski P. Depression and incident diabetic retinopathy: a prospective cohort study. Gen Hosp Psychiatry. 2011;33(5):429–35.  https://doi.org/10.1016/j.genhosppsych.2011.05.021.Google Scholar
  52. 52.
    Themeli Y, Aliko I, Hashorva A, Bajrami V, Idrizi A, Barbullushi M, et al. P-533 - the correlation between depression and diabetic nephropathy in type 2 diabetes mellitus. Eur Psychiatry. 2012;27:1–1.  https://doi.org/10.1016/S0924-9338(12)74700-4.Google Scholar
  53. 53.
    Wallentin M, Weed E, Østergaard L, Mouridsen K, Roepstorff A. Accessing the mental space-spatial working memory processes for language and vision overlap in precuneus. Hum Brain Mapp. 2008;29(5):524–32.  https://doi.org/10.1002/hbm.20413.Google Scholar
  54. 54.
    Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129(3):564–83.  https://doi.org/10.1093/brain/awl004.Google Scholar
  55. 55.
    Zhang J, Su J, Wang M, Zhao Y, Yao Q, Zhang Q, et al. Increased default mode network connectivity and increased regional homogeneity in migraineurs without aura. J Headache Pain. 2016;17(1):98.  https://doi.org/10.1186/s10194-016-0692-z.Google Scholar
  56. 56.
    Letzen JE, Robinson ME. Negative mood influences default mode network functional connectivity in patients with chronic low back pain: implications for functional neuroimaging biomarkers. Pain. 2017;158(1):48–57.  https://doi.org/10.1097/j.pain.0000000000000708.Google Scholar
  57. 57.
    Werring DJ, Bullmore ET, Toosy AT, Miller DH, Barker GJ, MacManus DG, et al. Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry. 2000;68(4):441–9.  https://doi.org/10.1136/jnnp.68.4.441.Google Scholar
  58. 58.
    Wang ZL, Zou L, Lu ZW, Xie XQ, Jia ZZ, Pan CJ, et al. Abnormal spontaneous brain activity in type 2 diabetic retinopathy revealed by amplitude of low-frequency fluctuations: a resting-state fMRI study. Clin Radiol. 2017;72(4):340.e1–7.  https://doi.org/10.1016/j.crad.2016.11.012.Google Scholar
  59. 59.
    Chyzhyk D, Graña M, Öngür D, Shinn AK. Discrimination of schizophrenia auditory hallucinators by machine learning of resting-state functional MRI. Int J Neural Syst. 2015;25(3):1550007.  https://doi.org/10.1142/S0129065715500070.
  60. 60.
    Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. Encoding of action by the Purkinje cells of the cerebellum. Nature. 2015;526(7573):439–42.  https://doi.org/10.1038/nature15693.Google Scholar
  61. 61.
    Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex. 2010;46(7):845–57.  https://doi.org/10.1016/j.cortex.2009.06.009.Google Scholar
  62. 62.
    Morenorius J. The cerebellum in fear and anxiety-related disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;85:23–32.  https://doi.org/10.1016/j.pnpbp.2018.04.002.Google Scholar
  63. 63.
    Ikeda K, Tsuchimochi H, Takeno Y, Yasuda M, Fukushima T, Toyoda K. Clinical analysis of the patients with hemodialysis associated with intracerebral hematoma. No Shinkei Geka. 2004;32(11):1133–7.  https://doi.org/10.2176/nmc.44.611.Google Scholar
  64. 64.
    Krapfenbauer K. Identification of beta cell dysfunction at the pre-symptomatic stage of diabetes mellitus by novel analytical system: liquid biopsy measurements in femtograms. EPMA J. 2017;8(1):35–41.  https://doi.org/10.1007/s13167-017-0079-5.Google Scholar
  65. 65.
    Duarte AA, Mohsin S, Golubnitschaja O. Diabetes care in figures: current pitfalls and future scenario. EPMA J. 2018;9(2 PG-125-131):125–31.  https://doi.org/10.1007/s13167-018-0133-y.Google Scholar
  66. 66.
    Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7(1):1–13.  https://doi.org/10.1186/s13167-016-0072-4.Google Scholar

Copyright information

© European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2019

Authors and Affiliations

  1. 1.Department of NephrologyThe First Affiliated Hospital of Nanchang UniversityNanchangPeople’s Republic of China
  2. 2.Department of OphthalmologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
  3. 3.Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangPeople’s Republic of China
  4. 4.Department of Urinary SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina

Personalised recommendations