Advertisement

Neuromyelitis optica spectrum disorders and pregnancy: relapse-preventive measures and personalized treatment strategies

  • Nadja Borisow
  • Kerstin Hellwig
  • Friedemann Paul
Review
  • 1 Downloads

Abstract

Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune inflammatory diseases of the central nervous system that predominately affect women. Some of these patients are of childbearing age at NMOSD onset. This study reviews, on the one hand, the role NMOSD play in fertility, pregnancy complications and pregnancy outcome, and on the other, the effect of pregnancy on NMOSD disease course and treatment options available during pregnancy. Animal studies show lower fertility rates in NMOSD; however, investigations into fertility in NMOSD patients are lacking. Pregnancies in NMOSD patients are associated with increased disease activity and more severe disability postpartum. Some studies found higher risks of pregnancy complications, e.g., miscarriages and preeclampsia. Acute relapses during pregnancy can be treated with methylprednisolone and/or plasma exchange/immunoadsorption. A decision to either stop or continue immunosuppressive therapy with azathioprine or rituximab during pregnancy should be evaluated carefully and factor in the patient’s history of disease activity. To this end, involving neuroimmunological specialist centers in the treatment and care of pregnant NMOSD patients is recommended, particularly in specific situations like pregnancy.

Keywords

Neuromyelitis optica Devic’s syndrome Pregnancy Relapse prevention Personalized treatment 

Notes

Compliance with ethical standards

Ethical approval

For this type of study, formal consent is not required.

Conflict of interest

N. Borisow declares no conflict of interest.

F. Paul is a member of the scientific advisory board of Novartis; has received lecture fees and travel reimbursement from Bayer, Novartis, Biogen Idec, Teva, Sanofi-Aventis/Genzyme, Merck Serono, Alexion, Chugai, MedImmune, and Shire; is academic editor of PLoS One, Associate Editor of Neurology® Neuroimmunology & Neuroinflammation; consulted for Sanofi-Genzyme, Biogen Idec, MedImmune, Shire, and Alexion; and received research support from Bayer, Novartis, Biogen Idec, Teva, Sanofi-Aventis/Genzyme, Alexion, Merck Serono, the German Research Foundation, the Werth Foundation of the city of Cologne, the German Federal Ministry of Research and Education, the Arthur Arnstein Stiftung Berlin, the EU FP7 Framework Program, Jackson Charitable Foundation, and the National Multiple Sclerosis of the USA.

K. Hellwig received consultant and lecture fees and research support from Bayer Healthcare, Biogen, Novartis Pharma, Teva Pharma, Roche, and Sanofi-Genzyme und Merck.

The NEMOS cohort/NationNMO is supported by the German Ministry for Education and Research (BMBF) as part of the German Competence Network Multiple Sclerosis (KKNMS; for NEMOS NationNMO-LAB FKZ 01GI1602A to B.W., NationNMO-PAT FKZ 01GI1602B to O.A., and NationNMO-DAB FKZ 01GI1602C to J.S.).

Human and animal studies

This paper included no studies of humans or animals.

References

  1. 1.
    Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol. 2014;176:149–64.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kremer L, Mealy M, Jacob A, Nakashima I, Cabre P, Bigi S, et al. Brainstem manifestations in neuromyelitis optica: a multicenter study of 258 patients. Mult Scler 2014;20:843–847.Google Scholar
  3. 3.
    Metz I, Beißbarth T, Ellenberger D, Pache F, Stork L, Ringelstein M, et al. Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016;3:e204.Google Scholar
  4. 4.
    Pache F, Wildemann B, Paul F, Jarius S. Neuromyelitis optica. Fortschr Neurol Psychiatr. 2017;85:e1.CrossRefPubMedGoogle Scholar
  5. 5.
    Borisow N, Kleiter I, Gahlen A, Fischer K, Wernecke K-D, Pache F, et al. Influence of female sex and fertile age on neuromyelitis optica spectrum disorders. Mult Scler 2017;23:1092–1103.Google Scholar
  6. 6.
    Bove R, Elsone L, Alvarez E, Borisow N, Cortez MM, Mateen FJ, et al. Female hormonal exposures and neuromyelitis optica symptom onset in a multicenter study. Neurol Neuroimmunol Neuroinflamm. 2017;4(3):e339.Google Scholar
  7. 7.
    Jarius S, Ruprecht K, Wildemann B, Kuempfel T, Ringelstein M, Geis C, et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation. 2012;9:14.Google Scholar
  8. 8.
    Pandit L, Asgari N, Apiwattanakul M, Palace J, Paul F, Leite MI, et al. Demographic and clinical features of neuromyelitis optica: a review. Mult Scler. 2015;21:845–53.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wingerchuk DM. Neuromyelitis optica: effect of gender. J Neurol Sci. 2009;286:18–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Asgari N, Flanagan EP, Fujihara K, Kim HJ, Skejoe HP, Wuerfel J, et al. Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm. 2017;4:e343.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bennett JL, O’Connor KC, Bar-Or A, Zamvil SS, Hemmer B, Tedder TF, et al. B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2015;2:e104.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bennett JL, de Seze J, Lana-Peixoto M, Palace J, Waldman A, Schippling S, et al. Neuromyelitis optica and multiple sclerosis: seeing differences through optical coherence tomography. Mult Scler 2015;21:678–688.Google Scholar
  13. 13.
    Hertwig L, Pache F, Romero-Suarez S, Stürner KH, Borisow N, Behrens J, et al. Distinct functionality of neutrophils in multiple sclerosis and neuromyelitis optica. Mult Scler. 2016;22:160–73.CrossRefPubMedGoogle Scholar
  14. 14.
    Jarius S, Paul F, Franciotta D, Waters P, Zipp F, Hohlfeld R, et al. Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat Clin Pract Neurol. 2008;4:202–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Schneider E, Zimmermann H, Oberwahrenbrock T, Kaufhold F, Kadas EM, Petzold A, et al. Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS One. 2013;8:e66151.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sinnecker T, Dörr J, Pfueller CF, Harms L, Ruprecht K, Jarius S, et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 2012;79:708–714.Google Scholar
  17. 17.
    Sinnecker T, Kuchling J, Dusek P, Dörr J, Niendorf T, Paul F, et al. Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA J 2015;6:16.Google Scholar
  18. 18.
    Sinnecker T, Schumacher S, Mueller K, Pache F, Dusek P, Harms L, et al. MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T. Neurol Neuroimmunol Neuroinflamm. 2016;3:e259.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zekeridou A, Lennon VA. Aquaporin-4 autoimmunity. Neurol Neuroimmunol Neuroinflamm. 2015;2:e110.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Finke C, Zimmermann H, Pache F, Oertel FC, Chavarro VS, Kramarenko Y, et al. Association of visual impairment in neuromyelitis optica spectrum disorder with visual network reorganization. JAMA Neurol 2018;75:296–303.Google Scholar
  21. 21.
    Finke C, Heine J, Pache F, Lacheta A, Borisow N, Kuchling J, et al. Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD. Neurol Neuroimmunol Neuroinflamm. 2016;3:e229.Google Scholar
  22. 22.
    Oertel FC, Zimmermann H, Paul F, Brandt AU. Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy. EPMA J. 2018;9:21–33.CrossRefPubMedGoogle Scholar
  23. 23.
    Oertel FC, Kuchling J, Zimmermann H, Chien C, Schmidt F, Knier B, et al. Microstructural visual system changes in AQP4-antibody-seropositive NMOSD. Neurol Neuroimmunol Neuroinflamm. 2017;4:e334.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Oertel FC, Havla J, Roca-Fernández A, Lizak N, Zimmermann H, Motamedi S, et al. Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. J Neurol Neurosurg Psychiatry. 2018.  https://doi.org/10.1136/jnnp-2018-318382
  25. 25.
    Takeshita Y, Obermeier B, Cotleur AC, Spampinato SF, Shimizu F, Yamamoto E, et al. Effects of neuromyelitis optica-IgG at the blood-brain barrier in vitro. Neurol Neuroimmunol Neuroinflamm 2017;4:e311.Google Scholar
  26. 26.
    Daneman R. Finding NMO. Neurol Neuroimmunol Neuroinflamm. 2017;4:e313.CrossRefPubMedGoogle Scholar
  27. 27.
    Borisow N, Döring A, Pfueller CF, Paul F, Dörr J, Hellwig K. Expert recommendations to personalization of medical approaches in treatment of multiple sclerosis: an overview of family planning and pregnancy. EPMA J. 2012;3:9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med. 1998;339:285–91.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim W, Kim S-H, Nakashima I, Takai Y, Fujihara K, Leite MI, et al. Influence of pregnancy on neuromyelitis optica spectrum disorder. Neurology 2012;78:1264–1267.Google Scholar
  30. 30.
    Borisow N, Hellwig K, Paul F. Neuromyelitis optica spectrum disorder and pregnancy. Nervenarzt. 2018;Google Scholar
  31. 31.
    Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation. 2016;13:279.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation. 2016;13:280.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jarius S, Kleiter I, Ruprecht K, Asgari N, Pitarokoili K, Borisow N, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: brainstem involvement—frequency, presentation and outcome. J Neuroinflammation. 2016;13:281.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pache F, Zimmermann H, Mikolajczak J, Schumacher S, Lacheta A, Oertel FC, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J Neuroinflammation. 2016;13:282.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Körtvélyessy P, Breu M, Pawlitzki M, Metz I, Heinze H-J, Matzke M, et al. ADEM-like presentation, anti-MOG antibodies, and MS pathology: TWO case reports. Neurol Neuroimmunol Neuroinflamm. 2017;4:e335.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sepúlveda M, Armangué T, Sola-Valls N, Arrambide G, Meca-Lallana JE, Oreja-Guevara C, et al. Neuromyelitis optica spectrum disorders: comparison according to the phenotype and serostatus. Neurol Neuroimmunol Neuroinflamm. 2016;3:e225.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Spadaro M, Gerdes LA, Krumbholz M, Ertl-Wagner B, Thaler FS, Schuh E, et al. Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016;3:e257.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jarius S, Ruprecht K, Stellmann JP, Huss A, Ayzenberg I, Willing A, et al. MOG-IgG in primary and secondary chronic progressive multiple sclerosis: a multicenter study of 200 patients and review of the literature. J Neuroinflammation. 2018;15:88.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jarius S, Paul F, Aktas O, Asgari N, Dale RC, de Seze J, et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation. 2018;15:134.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Reindl M, Rostasy K. MOG antibody-associated diseases. Neurol Neuroimmunol Neuroinflamm. 2015;2:e60.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zamvil SS, Slavin AJ. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol Neuroimmunol Neuroinflamm. 2015;2:e62.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pandit L, Mustafa S, Uppoor R, Nakashima I, Takahashi T, Kaneko K. Reversible paraspinal muscle hyperintensity in anti-MOG antibody-associated transverse myelitis. Neurol Neuroimmunol Neuroinflamm. 2018;5:e412.CrossRefPubMedGoogle Scholar
  43. 43.
    Ogawa R, Nakashima I, Takahashi T, Kaneko K, Akaishi T, Takai Y, et al. MOG antibody-positive, benign, unilateral, cerebral cortical encephalitis with epilepsy. Neurol Neuroimmunol Neuroinflamm. 2017;4:e322.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Waters P, Woodhall M, O’Connor KC, Reindl M, Lang B, Sato DK, et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflamm. 2015;2:e89.Google Scholar
  45. 45.
    Hamid SHM, Whittam D, Saviour M, Alorainy A, Mutch K, Linaker S, et al. Seizures and encephalitis in myelin oligodendrocyte glycoprotein IgG disease vs aquaporin 4 IgG disease. JAMA Neurol. 2018;75:65–71.CrossRefPubMedGoogle Scholar
  46. 46.
    Dos Passos GR, Oliveira LM, da Costa BK, Apostolos-Pereira SL, Callegaro D, Fujihara K, et al. MOG-IgG-associated optic neuritis, encephalitis, and myelitis: lessons learned from neuromyelitis optica spectrum disorder. Front Neurol. 2018;9:217.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pittock SJ, Weinshenker BG, Lucchinetti CF, Wingerchuk DM, Corboy JR, Lennon VA. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol. 2006;63:964–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Sun X-L, Ding J-H, Fan Y, Zhang J, Gao L, Hu G. Aquaporin 4 regulates the effects of ovarian hormones on monoamine neurotransmission. Biochem Biophys Res Commun. 2007;353:457–62.CrossRefPubMedGoogle Scholar
  49. 49.
    Sun X-L, Zhang J, Fan Y, Ding J-H, Sha J-H, Hu G. Aquaporin-4 deficiency induces subfertility in female mice. Fertil Steril. 2009;92:1736–43.CrossRefPubMedGoogle Scholar
  50. 50.
    Schmidt F, Zimmermann H, Mikolajczak J, Oertel FC, Pache F, Weinhold M, et al. Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord. 2017;11:45–50.CrossRefPubMedGoogle Scholar
  51. 51.
    Wildemann B, Jarius S, Paul F. Neuromyelitis optica. Nervenarzt. 2013;84:436–41.CrossRefPubMedGoogle Scholar
  52. 52.
    Klawiter EC, Bove R, Elsone L, Alvarez E, Borisow N, Cortez M, et al. High risk of postpartum relapses in neuromyelitis optica spectrum disorder. Neurology. 2017;89:2238–44.CrossRefPubMedGoogle Scholar
  53. 53.
    Fragoso YD, Adoni T, Bichuetti DB, Brooks JBB, Ferreira MLB, Oliveira EML, et al. Neuromyelitis optica and pregnancy. J Neurol. 2013;260:2614–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Nour MM, Nakashima I, Coutinho E, Woodhall M, Sousa F, Revis J, et al. Pregnancy outcomes in aquaporin-4-positive neuromyelitis optica spectrum disorder. Neurology 2016;86:79–87.Google Scholar
  55. 55.
    Shimizu Y, Fujihara K, Ohashi T, Nakashima I, Yokoyama K, Ikeguch R, et al. Pregnancy-related relapse risk factors in women with anti-AQP4 antibody positivity and neuromyelitis optica spectrum disorder. Mult Scler. 2016;22:1413–20.CrossRefPubMedGoogle Scholar
  56. 56.
    Bourre B, Marignier R, Zéphir H, Papeix C, Brassat D, Castelnovo G, et al. Neuromyelitis optica and pregnancy. Neurology 2012;78:875–879.Google Scholar
  57. 57.
    Davoudi V, Keyhanian K, Bove RM, Chitnis T. Immunology of neuromyelitis optica during pregnancy. Neurol Neuroimmunol Neuroinflamm. 2016;3:e288.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bonnet F, Mercié P, Morlat P, Hocke C, Vergnes C, Ellie E, et al. Devic’s neuromyelitis optica during pregnancy in a patient with systemic lupus erythematosus. Lupus. 1999;8:244–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Jurewicz A, Selmaj K. Relapse of neuromyelitis optica during pregnancy—treatment options and literature review. Clin Neurol Neurosurg. 2015;130:159–61.CrossRefPubMedGoogle Scholar
  60. 60.
    Shang W, Liu J. Neuromyelitis optica during pregnancy. Int J Gynaecol Obstet. 2011;115:66–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Saadoun S, Waters P, Leite MI, Bennett JL, Vincent A, Papadopoulos MC. Neuromyelitis optica IgG causes placental inflammation and fetal death. J Immunol. 2013;191:2999–3005.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Reuss R, Rommer PS, Brück W, Paul F, Bolz M, Jarius S, et al. A woman with acute myelopathy in pregnancy: case outcome. BMJ. 2009;339:b4026.CrossRefPubMedGoogle Scholar
  63. 63.
    Chang Y, Shu Y, Sun X, Lu T, Chen C, Fang L, et al. Study of the placentae of patients with neuromyelitis optica spectrum disorder. J Neurol Sci. 2018;387:119–23.CrossRefPubMedGoogle Scholar
  64. 64.
    Ringelstein M, Harmel J, Distelmaier F, Ingwersen J, Menge T, Hellwig K, et al. Neuromyelitis optica and pregnancy during therapeutic B cell depletion: infant exposure to anti-AQP4 antibody and prevention of rebound relapses with low-dose rituximab postpartum. Mult Scler. 2013;19:1544–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Jarius S, Jacobi C, de Seze J, Zephir H, Paul F, Franciotta D, et al. Frequency and syndrome specificity of antibodies to aquaporin-4 in neurological patients with rheumatic disorders. Mult Scler. 2011;17:1067–73.CrossRefPubMedGoogle Scholar
  66. 66.
    Jarius S, Paul F, Franciotta D, de Seze J, Münch C, Salvetti M, et al. Neuromyelitis optica spectrum disorders in patients with myasthenia gravis: ten new aquaporin-4 antibody positive cases and a review of the literature. Mult Scler. 2012;18:1135–43.CrossRefPubMedGoogle Scholar
  67. 67.
    Martínez-Sánchez N, Pérez-Pinto S, Robles-Marhuenda Á, Arnalich-Fernández F, Martín Cameán M, Hueso Zalvide E, et al. Obstetric and perinatal outcome in anti-Ro/SSA-positive pregnant women: a prospective cohort study. Immunol Res. 2017;65:487–94.CrossRefPubMedGoogle Scholar
  68. 68.
    Doti PI, Escoda O, Cesar-Díaz S, Palasti S, Teixidó I, Sarquella-Brugada G, et al. Congenital heart block related to maternal autoantibodies: descriptive analysis of a series of 18 cases from a single center. Clin Rheumatol. 2016;35:351–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Trebst C, Jarius S, Berthele A, Paul F, Schippling S, Wildemann B, et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol. 2014;261:1–16.CrossRefPubMedGoogle Scholar
  70. 70.
    Weinshenker BG, Wingerchuk DM. Neuromyelitis spectrum disorders. Mayo Clin Proc. 2017;92:663–79.CrossRefPubMedGoogle Scholar
  71. 71.
    Abboud H, Petrak A, Mealy M, Sasidharan S, Siddique L, Levy M. Treatment of acute relapses in neuromyelitis optica: steroids alone versus steroids plus plasma exchange. Mult Scler. 2016;22:185–92.CrossRefPubMedGoogle Scholar
  72. 72.
    Bonnan M, Cabre P. Plasma exchange in severe attacks of neuromyelitis optica. Mult Scler Int. 2012;2012:787630.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Kleiter I, Gahlen A, Borisow N, Fischer K, Wernecke K-D, Hellwig K, et al. Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. Neurology(R) Neuroimmunol Neuroinflammation.Google Scholar
  74. 74.
    Kleiter I, Gahlen A, Borisow N, Fischer K, Wernecke K-D, Wegner B, et al. Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann Neurol. 2016;79:206–16.CrossRefPubMedGoogle Scholar
  75. 75.
    Hoffmann F, Kraft A, Heigl F, Mauch E, Koehler J, Harms L, et al. Tryptophan immunoadsorption for multiple sclerosis and neuromyelitis optica: therapy option for acute relapses during pregnancy and breastfeeding. Nervenarzt. 2015;86:179–86.CrossRefPubMedGoogle Scholar
  76. 76.
    Park-Wyllie L, Mazzotta P, Pastuszak A, Moretti ME, Beique L, Hunnisett L, et al. Birth defects after maternal exposure to corticosteroids: prospective cohort study and meta-analysis of epidemiological studies. Teratology. 2000;62:385–92.CrossRefPubMedGoogle Scholar
  77. 77.
    Embryotox. [cited 2017 Aug 24]. Available from: http://www.embyotox.de.
  78. 78.
    Bontadi A, Ruffatti A, Marson P, Tison T, Tonello M, Hoxha A, et al. Plasma exchange and immunoadsorption effectively remove antiphospholipid antibodies in pregnant patients with antiphospholipid syndrome. J Clin Apher. 2012;27:200–4.CrossRefPubMedGoogle Scholar
  79. 79.
    El-Haieg DO, Zanati MF, El-Foual FM. Plasmapheresis and pregnancy outcome in patients with antiphospholipid syndrome. Int J Gynaecol Obstet. 2007;99:236–41.CrossRefPubMedGoogle Scholar
  80. 80.
    Abou-Nassar K, Karsh J, Giulivi A, Allan D. Successful prevention of thrombotic thrombocytopenic purpura (TTP) relapse using monthly prophylactic plasma exchanges throughout pregnancy in a patient with systemic lupus erythematosus and a prior history of refractory TTP and recurrent fetal loss. Transfus Apher Sci. 2010;43:29–31.CrossRefPubMedGoogle Scholar
  81. 81.
    Proia A, Paesano R, Torcia F, Annino L, Capria S, Ferrari A, et al. Thrombotic thrombocytopenic purpura and pregnancy: a case report and a review of the literature. Ann Hematol. 2002;81:210–4.CrossRefPubMedGoogle Scholar
  82. 82.
    Cox JL, Koepsell SA, Shunkwiler SM. Therapeutic plasma exchange and pregnancy: a case report and guidelines for performing plasma exchange in a pregnant patient. J Clin Apher. 2017;32:191–5.CrossRefPubMedGoogle Scholar
  83. 83.
    Nakamura Y, Yoshida K, Itoh S, Kanai Y, Tsuda H, Hashimoto H, et al. Immunoadsorption plasmapheresis as a treatment for pregnancy complicated by systemic lupus erythematosus with positive antiphospholipid antibodies. Am J Reprod Immunol. 1999;41:307–11.CrossRefPubMedGoogle Scholar
  84. 84.
    Stellmann J-P, Krumbholz M, Friede T, Gahlen A, Borisow N, Fischer K, et al. Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J Neurol Neurosurg Psychiatry. 2017;88:639–47.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Damato V, Evoli A, Iorio R. Efficacy and safety of rituximab therapy in neuromyelitis optica spectrum disorders: a systematic review and meta-analysis. JAMA Neurol. 2016;73:1342–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Valentino P, Marnetto F, Granieri L, Capobianco M, Bertolotto A. Aquaporin-4 antibody titration in NMO patients treated with rituximab: a retrospective study. Neurol Neuroimmunol Neuroinflamm. 2017;4:e317.CrossRefPubMedGoogle Scholar
  87. 87.
    Ellwardt E, Ellwardt L, Bittner S, Zipp F. Monitoring B-cell repopulation after depletion therapy in neurologic patients. Neurol Neuroimmunol Neuroinflamm. 2018;5:e463.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Coelho J, Beaugerie L, Colombel JF, Hébuterne X, Lerebours E, Lémann M, et al. Pregnancy outcome in patients with inflammatory bowel disease treated with thiopurines: cohort from the CESAME Study. Gut 2011;60:198–203.Google Scholar
  89. 89.
    Plauborg AV, Hansen AV, Garne E. Use of azathioprine and corticosteroids during pregnancy and birth outcome in women diagnosed with inflammatory bowel disease. Birth Defects Res Part A Clin Mol Teratol. 2016;106:494–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Bermas BL. Non-steroidal anti inflammatory drugs, glucocorticoids and disease modifying anti-rheumatic drugs for the management of rheumatoid arthritis before and during pregnancy. Curr Opin Rheumatol. 2014;26:334–40.CrossRefPubMedGoogle Scholar
  91. 91.
    Alami Z, Agier MS, Ahid S, Vial T, Dautriche A, Lagarce L, et al. Pregnancy outcome following in utero exposure to azathioprine: a French comparative observational study. Therapie. 2017;Google Scholar
  92. 92.
    DeWitte DB, Buick MK, Cyran SE, Maisels MJ. Neonatal pancytopenia and severe combined immunodeficiency associated with antenatal administration of azathioprine and prednisone. J Pediatr. 1984;105:625–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Jharap B, de Boer NKH, Stokkers P, Hommes DW, Oldenburg B, Dijkstra G, et al. Intrauterine exposure and pharmacology of conventional thiopurine therapy in pregnant patients with inflammatory bowel disease. Gut. 2014;63:451–7.CrossRefPubMedGoogle Scholar
  94. 94.
    Thomas C, Monteil-Ganiere C, Mirallié S, Hémont C, Dert C, Léger A, et al. A severe neonatal lymphopenia associated with administration of azathioprine to the mother in a context of Crohn’s disease. J Crohns Colitis. 2017;Google Scholar
  95. 95.
    Friedrichs B, Tiemann M, Salwender H, Verpoort K, Wenger MK, Schmitz N. The effects of rituximab treatment during pregnancy on a neonate. Haematologica. 2006;91:1426–7.PubMedGoogle Scholar
  96. 96.
    Klink DT, van Elburg RM, Schreurs MWJ, van Well GTJ. Rituximab administration in third trimester of pregnancy suppresses neonatal B-cell development. Clin Dev Immunol. 2008;2008:271363.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Pellkofer HL, Suessmair C, Schulze A, Hohlfeld R, Kuempfel T. Course of neuromyelitis optica during inadvertent pregnancy in a patient treated with rituximab. Mult Scler. 2009;15:1006–8.CrossRefPubMedGoogle Scholar
  98. 98.
    Das G, Damotte V, Gelfand JM, Bevan C, Cree BAC, Do L, et al. Rituximab before and during pregnancy: a systematic review, and a case series in MS and NMOSD. Neurol Neuroimmunol Neuroinflamm. 2018;5:e453.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Elsone L, Panicker J, Mutch K, Boggild M, Appleton R, Jacob A. Role of intravenous immunoglobulin in the treatment of acute relapses of neuromyelitis optica: experience in 10 patients. Mult Scler. 2014;20:501–4.CrossRefPubMedGoogle Scholar
  100. 100.
    Magraner MJ, Coret F, Casanova B. The effect of intravenous immunoglobulin on neuromyelitis optica. Neurologia. 2013;28:65–72.CrossRefPubMedGoogle Scholar
  101. 101.
    Okada K, Tsuji S, Tanaka K. Intermittent intravenous immunoglobulin successfully prevents relapses of neuromyelitis optica. Intern Med. 2007;46:1671–2.CrossRefPubMedGoogle Scholar
  102. 102.
  103. 103.
    Araki M, Matsuoka T, Miyamoto K, Kusunoki S, Okamoto T, Murata M, et al. Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology. 2014;82:1302–6.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Ringelstein M, Ayzenberg I, Harmel J, Lauenstein A-S, Lensch E, Stögbauer F, et al. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol. 2015;72:756–63.CrossRefPubMedGoogle Scholar
  105. 105.
    Hoeltzenbein M, Beck E, Rajwanshi R, Gøtestam Skorpen C, Berber E, Schaefer C, et al. Tocilizumab use in pregnancy: analysis of a global safety database including data from clinical trials and post-marketing data. Semin Arthritis Rheum. 2016;46:238–45.CrossRefPubMedGoogle Scholar
  106. 106.
    Nakajima K, Watanabe O, Mochizuki M, Nakasone A, Ishizuka N, Murashima A. Pregnancy outcomes after exposure to tocilizumab: a retrospective analysis of 61 patients in Japan. Mod Rheumatol. 2016;26:667–71.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2018

Authors and Affiliations

  • Nadja Borisow
    • 1
  • Kerstin Hellwig
    • 2
  • Friedemann Paul
    • 1
    • 3
  1. 1.NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
  2. 2.Clinic for Neurology, St. Josef HospitalRuhr Universität BochumBochumGermany
  3. 3.Experimental and Clinical Research CenterMax Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin BerlinBerlinGermany

Personalised recommendations