EPMA Journal

, Volume 9, Issue 2, pp 133–160 | Cite as

Mental stress as consequence and cause of vision loss: the dawn of psychosomatic ophthalmology for preventive and personalized medicine

  • Bernhard A. SabelEmail author
  • Jiaqi Wang
  • Lizbeth Cárdenas-Morales
  • Muneeb Faiq
  • Christine Heim


The loss of vision after damage to the retina, optic nerve, or brain has often grave consequences in everyday life such as problems with recognizing faces, reading, or mobility. Because vision loss is considered to be irreversible and often progressive, patients experience continuous mental stress due to worries, anxiety, or fear with secondary consequences such as depression and social isolation. While prolonged mental stress is clearly a consequence of vision loss, it may also aggravate the situation. In fact, continuous stress and elevated cortisol levels negatively impact the eye and brain due to autonomous nervous system (sympathetic) imbalance and vascular dysregulation; hence stress may also be one of the major causes of visual system diseases such as glaucoma and optic neuropathy. Although stress is a known risk factor, its causal role in the development or progression of certain visual system disorders is not widely appreciated. This review of the literature discusses the relationship of stress and ophthalmological diseases. We conclude that stress is both consequence and cause of vision loss. This creates a vicious cycle of a downward spiral, in which initial vision loss creates stress which further accelerates vision loss, creating even more stress and so forth. This new psychosomatic perspective has several implications for clinical practice. Firstly, stress reduction and relaxation techniques (e.g., meditation, autogenic training, stress management training, and psychotherapy to learn to cope) should be recommended not only as complementary to traditional treatments of vision loss but possibly as preventive means to reduce progression of vision loss. Secondly, doctors should try their best to inculcate positivity and optimism in their patients while giving them the information the patients are entitled to, especially regarding the important value of stress reduction. In this way, the vicious cycle could be interrupted. More clinical studies are now needed to confirm the causal role of stress in different low vision diseases to evaluate the efficacy of different anti-stress therapies for preventing progression and improving vision recovery and restoration in randomized trials as a foundation of psychosomatic ophthalmology.


Low vision Psychology Psychosomatic medicine Relaxation Restoration Stress Predictive Preventive Personalized medicine 



We thank Dr. Sundara Ram of the Mountain Top Clinic, Coonor, India, for pointing us to the Sanskrit source of Susruta [10].

Compliance with ethical standards

Conflict of interest

B. Sabel is co-owner of a private medical practice ( where the two patients described in this paper were treated.

Ethical statement

For this type of study, formal consent is not required. We thank our patients for their consent to publish their case histories.


  1. 1.
    WHO. Visual impairment and blindness. 2014.Google Scholar
  2. 2.
    Kempen GIJM, Ballemans J, Ranchor AV, et al. The impact of low vision on activities of daily living, symptoms of depression, feelings of anxiety and social support in community-living oder adults seeking vision rehabilitation services. Qual Life Res. 2012;21:1405–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Sabel BA, Fedorov A, Henrich-Noack P, Gall C. Vision restoration after brain damage: the “residual vision activation theory”. Prog Brain Res. 2010;192:199–262.CrossRefGoogle Scholar
  4. 4.
    Kasten E, Wüst S, Behrens-Baumann W, et al. Computer-based training for the treatment of partial blindness. Nat Med. 1998;4:1083–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Sabel BA, Gudlin J. Vision restoration training for Glaucoma. A randomized clinical trial. JAMA Ophthalmology. 2014;132:381–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Fedorov A, Jobke S, Bersnev V, Chibisova A, Chibisova Y, Gall C, et al. Restoration of vision after optic nerve lesions with noninvasive transorbital alternating current stimulation: a clinical observation study. Brain Stimul. 2011;4:189–201.Google Scholar
  7. 7.
    Gall C, Sgorzaly S, Schmidt S, Brandt S, Fedorov A, Sabel BA. Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathy. Brain Stimul. 2011;4:175–88.Google Scholar
  8. 8.
    Sabel BA, Fedorov AB, Naue N, Borrmann A, Herrmann C, Gall C. Non-invasive alternating current stimulation improves vision in optic neuropathy. Restor Neurol Neurosci. 2011;29:497–510.Google Scholar
  9. 9.
    Bola M, Gall C, Moewes C, Fedorov A, Hinrichs H, Sabel BA. Brain functional connectivity network breakdown and restoration in blindness. Neurology. 2014;83:542–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Susruta (1.300 BC). “Susruta Samhita”. Krishnadas Academy, Varanasi, India. 1998.Google Scholar
  11. 11.
    Flammer J, Konieczka K. The discovery of the Flammer syndrome: a historical and personal perspective. EPMA J. 2017;8:75–97.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Konieczka K, Ritch R, Traverso CE, et al. Flammer syndrome. EPMA J. 2014;5:11.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Fernald LD. Psychology: six perspectives. Thousand Oaks, CA: Sage Publications. 2008:12–5.Google Scholar
  14. 14.
    Folkman S. Stress: appraisal and coping. Encyclopedia of behavioral medicine. Springer. N Y. 2013:1913–5.Google Scholar
  15. 15.
    Shindler KS, Galetta SL, Volpe NJ. Functional visual loss. Curr Treat Options Neurol. 2004;6:67–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Faiq MA, Dada R, Kumar A, et al. Brain: the potential diagnostic and therapeutic target for glaucoma. CNS Neurological Disorders Drug Targets. 2016;15:839–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Gupta N, Yücel YH. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol. 2007;18:110–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Gupta N, Ang LC, De Tilly LN, et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90:674–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gupta N, Yücel YH. What changes can we expect in the brain of glaucoma patients? Surv Ophthalmol. 2007;52:S122–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang J, Li T, Sabel BA, et al. Structural brain alterations in primary open angle glaucoma: a 3T MRI study. Sci Rep. 2016;6:18969.Google Scholar
  21. 21.
    Konieczka K, Choi HJ, Koch S, et al. Relationship between normal tension glaucoma and Flammer syndrome. EPMA J. 2017;8:111–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Flammer J, Haefliger IO, Orgül S, et al. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma. 1999;8:212–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol. 2007;52:S144–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Bojinova RI, Konieczka K, Todorova MG. Unilateral loss of vision after spinal surgery in a patient with Flammer syndrome. Klin Monatsbl Augenheilkd. 2016;233:429–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Sabel BA. “Restoring Low Vision”. Amazon, 2016;241pp.Google Scholar
  26. 26.
    Rozanski C, Haythornthwaite JA, Dagnelie G, et al. Applying theories and interventions from behavioral medicine to understand and reduce visual field variability in patients with vision loss. Med Hypotheses. 2014;83:190–5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Olawoye O, Teng CC, Shabto U, et al. Visual recovery in a patient with total hyphema, neovascular glaucoma, long-standing retinal detachment and no light perception vision: a case report. J Med Case Rep. 2011;5:221.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Cannon WB. Bodily changes in pain, hunger, fear and rage. Oxford: Appleton; 1929.Google Scholar
  29. 29.
    Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Heim C, Newport DJ, Heit S, et al. Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. J Am Med Assoc. 2000;284:592–7.CrossRefGoogle Scholar
  31. 31.
    Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, et al. Locus ceruleus norepinephrine release: a central regulator of CNS spatio-temporal activation? Front Synaptic Neurosci. 2016;8:25.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Cohen S, Janicki-Deverts D, Doyle WJ, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci. 2012;109:5995–9.PubMedCrossRefGoogle Scholar
  33. 33.
    McKlveen JM, Myers B, Flak JN, et al. Role of prefrontal cortex glucocorticoid receptors in stress and emotion. Biol Psychiatry. 2013;74:672–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lupien SJ, McEwen BS, Gunnar MR, et al. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Heim C, Ehlert U, Hellhammer DH. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology. 2000;25:1–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatr. 2003;160:1554–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Roozendaal B, Koolhaas JM, Bohus B. Differential effect of lesioning of the central amygdala on the bradycardiac and behavioral response of the rat in relation to conditioned social and solitary stress. Behav Brain Res. 1990;41:39–48.PubMedCrossRefGoogle Scholar
  38. 38.
    Roozendaal B, Koolhaas JM, Bohus B. Central amygdala lesions affect behavioral and autonomic balance during stress in rats. Physiol Behav. 1991;50:777–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Bhatnagar S, Vining C, Denski KAI. Regulation of chronic stress-induced changes in hypothalamic-pituitary-adrenal activity by the basolateral amygdala. Ann N Y Acad Sci. 2004;1032:315–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Dayas CV, Buller KM, Day TA. Neuroendocrine responses to an emotional stressor: evidence for involvement of the medial but not the central amygdala. Eur J Neurosci. 1999;11:2312–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130:601–30.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Madrigal JLM, Moro MA, Lizasoain I, et al. Stress-induced increase in extracellular sucrose space in rats is mediated by nitric oxide. Brain Res. 2002;938:87–91.PubMedCrossRefGoogle Scholar
  44. 44.
    O'Connor KA, Johnson JD, Hansen MK, et al. Peripheral and central proinflammatory cytokine response to a severe acute stressor. Brain Res. 2003;991:123–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Maes M. Major depression and activation of the inflammatory response system. flammerCytokines, stress, and depression. Springer US. 1999;25–46.Google Scholar
  46. 46.
    Leonard BE, Song C. Stress, depression, and the role of cytokines. Adv Exp Med Biol. 1999;461:251–65.Google Scholar
  47. 47.
    Torriglia A, Valamanesh F, Behar-Cohen F. On the retinal toxicity of intraocular glucocorticoids. Biochem Pharmacol. 2010;80:1878–86.PubMedCrossRefGoogle Scholar
  48. 48.
    Riccadonna M, Covi G, Pancera P, et al. Autonomic system activity and 24-hour blood pressure variations in subjects with normal-and high-tension glaucoma. J Glaucoma. 2003;12:156–63.PubMedCrossRefGoogle Scholar
  49. 49.
    Na KS, Lee NY, Park SH, et al. Autonomic dysfunction in normal tension glaucoma: the short-term heart rate variability analysis. J Glaucoma. 2010;19:377–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Marc A, Stan C. Effect of physical and psychological stress on the course of primary open angle glaucoma. Oftalmologia (Bucharest, Romania: 1990). 2013;57:60–6.Google Scholar
  51. 51.
    Stan C, Tirziu D, Lupaşcu S. A new risk factor in glaucoma? Oftalmologia (Bucharest, Romania: 1990). 2011;55:74–6.Google Scholar
  52. 52.
    Sommer A. Ocular hypertension and normal-tension glaucoma: time for banishment and burial. Arch Ophthalmol. 2011;129:785–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Flammer J, Konieczka K, Bruno RM, et al. The eye and the heart. Eur Heart J. 2013;34:1270–8.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Flammer J, Konieczka K, Flammer AJ. The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J. 2013;4:14.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Flammer J. Die glaukomatöse Optikusneuropathie: Ein Reperfusionsschaden. Klin Monatsbl Augenheilkd. 2001;218:290–1.PubMedCrossRefGoogle Scholar
  56. 56.
    Toda N, Nakanishi-Toda M. How mental stress affects endothelial function. Pflügers Archiv-Eur J Physiol. 2011;462:779–94.CrossRefGoogle Scholar
  57. 57.
    Kurysheva NI, Tomilova IK, Kadykova EL, et al. Nitrogen oxide in the pathogenesis of glaucoma and cataract. Vestn oftalmol. 2001;117:34–7.PubMedGoogle Scholar
  58. 58.
    Schmetterer L, Polak K. Role of nitric oxide in the control of ocular blood flow. Prog Retin Eye Res. 2001;20:823–47.PubMedCrossRefGoogle Scholar
  59. 59.
    Kurysheva NI, Trubilin VN, Tsaregorodtseva MA, et al. Features autonomic nervous system cardiovascular system in patients with glaucoma normal pressure. Ophthalmology. 2012;9:44–8.Google Scholar
  60. 60.
    Iwata M, Ota KT, Li XY, et al. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry. 2016;80:12–22.PubMedCrossRefGoogle Scholar
  61. 61.
    Shily BG. Psychophysiological stress, elevated intraocular pressure, and acute closed-angle glaucoma. Optom Vis Sci. 1987;64:866–70.CrossRefGoogle Scholar
  62. 62.
    Bali SJ, Parmar T, Arora V, et al. Evaluation of major depressive disorder in patients receiving chronic treatment with topical timolol. Ophthalmologica. 2011;226:157–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Severn P, Fraser S, Finch T, et al. Which quality of life score is best for glaucoma patients and why? BMC Ophthalmol. 2008;8:2.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    De Leo D, Hickey PA, Meneghel G, et al. Blindness, fear of sight loss, and suicide. Psychosomatics. 1999;40:339–44.PubMedCrossRefGoogle Scholar
  65. 65.
    Nyman SR, Dibb B, Victor CR, et al. Emotional well-being and adjustment to vision loss in later life: a meta-synthesis of qualitative studies. Disabil Rehabil. 2012;34:971–81.PubMedCrossRefGoogle Scholar
  66. 66.
    Mozaffarieh M, Grieshaber MC, Flammer J. Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis. 2008;14:224.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359–93.PubMedCrossRefGoogle Scholar
  68. 68.
    Said SM, Albouaini K, Herold J, et al. Takotsubo syndrome from original description up to now. Medizinische Klinik (Munich, Germany: 1983). 2009;104:434–40.CrossRefGoogle Scholar
  69. 69.
    Konieczka K, Koch S, Schoetzau A, et al. Increased prevalence of Flammer syndrome in patients with retinitis pigmentosa. Klin Monatsbl Augenheilkd. 2016;233:448–52.PubMedCrossRefGoogle Scholar
  70. 70.
    Fang L, Baertschi M, Mozaffarieh M. The effect of flammer-syndrome on retinal venous pressure. BMC Ophthalmol. 2014;14:121.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Flammer J, Konieczka K. Retinal venous pressure: the role of endothelin. EPMA J. 2015;6:21.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bojinova RI, Konieczka K, Meyer P, et al. The trilateral link between anaesthesia, perioperative visual loss and Flammer syndrome. BMC Anesthesiol. 2016;16:10.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Konieczka K, Koch S, Binggeli T, et al. Multiple sclerosis and primary vascular dysregulation (Flammer syndrome). EPMA J. 2016;7:1–5.CrossRefGoogle Scholar
  74. 74.
    Bruce BB, Newman NJ. Functional visual loss. Neurol Clin. 2010;28:789–802.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lim SA, Siatkowski RM, Farris BK. Functional visual loss in adults and children patient characteristics, management, and outcomes. Ophthalmology. 2015;112:1821–8.CrossRefGoogle Scholar
  76. 76.
    Odberg T, Jakobsen JE, Hultgren SJ, et al. The impact of glaucoma on the quality of life of patients in Norway. Acta Ophthalmol. 2001;79:116–20.CrossRefGoogle Scholar
  77. 77.
    Odberg T, Jakobsen JE, Hultgren SJ, et al. The impact of glaucoma on the quality of life of patients in Norway. II. Patient response correlated to objective data. Acta Ophthalmol Scand. 2001;79:121–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Hamelin N, Blatrix C, Brion F, et al. How patients react when glaucoma is diagnosed? J Fr Ophtalmol. 2002;25:795–8.Google Scholar
  79. 79.
    Bechetoille A, Arnould B, Bron A, et al. Measurement of health-related quality of life with glaucoma: validation of the Glau-QoL© 36-item questionnaire. Acta Ophthalmol. 2008;86:71–80.PubMedCrossRefGoogle Scholar
  80. 80.
    Bramley T, Peeples P, Walt JG, et al. Impact of vision loss on costs and outcomes in medicare beneficiaries with glaucoma. Arch Ophthalmol. 2008;126:849–56.PubMedCrossRefGoogle Scholar
  81. 81.
    Skalicky S, Goldberg I. Depression and quality of life in patients with glaucoma: a cross-sectional analysis using the Geriatric Depression Scale-15, assessment of function related to vision, and the Glaucoma Quality of Life-15. J Glaucoma. 2008;17:546–51.PubMedCrossRefGoogle Scholar
  82. 82.
    Kong X, Yan M, Sun X, et al. Anxiety and depression are more prevalent in primary angle closure glaucoma than in primary open-angle glaucoma. J Glaucoma. 2015;24:e57–63.PubMedCrossRefGoogle Scholar
  83. 83.
    Mabuchi F, Yoshimura K, Kashiwagi K, et al. Risk factors for anxiety and depression in patients with glaucoma. Br J Ophthalmol. 2012;96:821–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Diniz-Filho A, Abe RY, Cho HJ, et al. Fast visual field progression is associated with depressive symptoms in patients with glaucoma. Ophthalmology. 2016;123:754–9.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Casten R, Edmonds S, Rovner B. The impact of depression in older adults with age-related macular degeneration. J Visual Impair Blindness. 2002;96:399–415.Google Scholar
  86. 86.
    Williams RA, Brody BL, Thomas RG, et al. The psychosocial impact of macular degeneration. Arch Ophthalmol. 1998;116:514–20.PubMedCrossRefGoogle Scholar
  87. 87.
    Wahl HW, Schilling O, Becker S. Age-related macular degeneration and change in psychological control: role of time since diagnosis and functional ability. J Gerontol Ser B Psychol Sci Soc Sci. 2007;62:P90–7.CrossRefGoogle Scholar
  88. 88.
    Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368:1795–809.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Strougo Z, Badoux A, Duchanel D. Psycho-affective problems associated with retinitis pigmentosa. J Fr Ophtalmol. 1996;20:111–6.Google Scholar
  90. 90.
    Bittner AK, Ibrahim MA, Haythomthwaite JA, et al. Vision test variability in retinitis pigmentosa and psychosocial factors. Optom Vis Sci. 2011;88:1496.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hahm BJ, Shin YW, Shim EJ, et al. Depression and the vision-related quality of life in patients with retinitis pigmentosa. Br J Ophthalmol. 2008;92:650–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Angi M, Rupolo G, De Bertolini C, et al. Personality, psychophysical stress and myopia progression. Graefes Arch Clin Exp Ophthalmol. 1993;231:136–40.PubMedCrossRefGoogle Scholar
  93. 93.
    Avetisov ES, Gundorova RA, Shakarian AA, et al. Effects of acute psychogenic stress on the state of several functions of the visual analyzer. Vestn oftalmol. 1991;107:17–9.PubMedGoogle Scholar
  94. 94.
    Gawron VJ. Ocular accommodation, personality, and autonomic balance. Optom Vision Sci. 1983;60:630–9.CrossRefGoogle Scholar
  95. 95.
    Li M, Gong L, Sun X, et al. Anxiety and depression in patients with dry eye syndrome. Curr Eye Res. 2011;36:1–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Kaluza G, Maurer H. Stress and intraocular pressure in open angle glaucoma. Psychol Health. 1997;12:667–75.CrossRefGoogle Scholar
  97. 97.
    Pagani M, Mazzuero G, Ferrari A, et al. Sympathovagal interaction during mental stress. A study using spectral analysis of heart rate variability in healthy control subjects and patients with a prior myocardial infarction. Circulation. 1991;83:II43–51.PubMedGoogle Scholar
  98. 98.
    Freeman EE, Lesk MR, Harasymowycz P, et al. Maladaptive coping strategies and glaucoma progression. Medicine. 2016;95:e4761.Google Scholar
  99. 99.
    Çakmak H, Altinyazar V, Yilmaz SG, et al. The temperament and character personality profile of the glaucoma patient. BMC Ophthalmol. 2015;15:125.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Bubella RM, Bubella DM, Cillino S. Type a behavior pattern: is it a risk factor for open-angle chronic glaucoma? J Glaucoma. 2014;23:199–201.PubMedCrossRefGoogle Scholar
  101. 101.
    Mabuchi F, Yoshimura K, Kashiwagi K, et al. Personality assessment based on the five-factor model of personality structure in patients with primary open-angle glaucoma. Jpn J Ophthalmol. 2005;49:31–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Schinazi VR. Psychosocial implications of blindness and low-vision. CASA Working Papers 114, University College London, UK; 2007.Google Scholar
  103. 103.
    Carver CS, Connor-Smith J. Personality and coping. Annu Rev Psychol. 2010;61:679–704.PubMedCrossRefGoogle Scholar
  104. 104.
    Benn DT. The role of personality traits and coping strategies in late-life adaptation to vision loss. Dissertation, AAI9730084. ETD Collection for Fordham University; 1997.Google Scholar
  105. 105.
    Tolman J, Hill RD, Kleinschmidt JJ, et al. Psychosocial adaptation to visual impairment and its relationship to depressive affect in older adults with age-related macular degeneration. Gerontologist. 2005;45:747–53.PubMedCrossRefGoogle Scholar
  106. 106.
    von Arb M, Gompper B, Meyer AH, et al. Relationship between gender role, anger expression, thermal discomfort and sleep onset latency in women. Bio Psycho Soc Med. 2009;3:11.Google Scholar
  107. 107.
    Kaluza G, Strempel I. Training in relaxation and visual imagery with patients who have open-angle glaucoma. Int J Rehabil Health. 1995;1:261–73.CrossRefGoogle Scholar
  108. 108.
    Der Schultz-Zehden W. Einfluß psychotherapeutischer Maßnahmen auf die Behandlung des Primärglaukoms. Augenarzt. 1977;11:368–79.Google Scholar
  109. 109.
    Brennan M, Cardinali G. The use of preexisting and novel coping strategies in adapting to age-related vision loss. Gerontologist. 2000;40:327–34.Google Scholar
  110. 110.
    Tang YY, Hölzel BK, Posner MI. The neuroscience of mindfulness meditation. Nat Rev Neurosci. 2015;16:213–25.PubMedCrossRefGoogle Scholar
  111. 111.
    Pace TWW, Negi LT, Adame DD, et al. Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress. Psychoneuroendocrinology. 2009;34:87–98.PubMedCrossRefGoogle Scholar
  112. 112.
    Taneja DK. Yoga and health. Indian J Community Med. 2014;39:68.Google Scholar
  113. 113.
    Stahl JE, Dossett ML, LaJoie AS, et al. Relaxation response and resiliency training and its effect on healthcare resource utilization. PLoS One. 2015;10:e0140212.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kruzliak P, Sabo J, Zulli A. Endothelial endoplasmic reticulum and nitrative stress in endothelial dysfunction in the atherogenic rabbit model. Acta Histochem. 2015;117:762–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Flaten MA, Aslaksen PM, Finset A, et al. Cognitive and emotional factors in placebo analgesia. J Psychosom Res. 2006;61:81–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Bushell WC. Longevity. Ann N Y Acad Sci. 2009;1172:20–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Schneider RH, Grim CE, Rainforth MV, et al. Stress reduction in the secondary prevention of cardiovascular disease. Circulation: Cardiovasc Qual Outcomes. 2012;5:750–8.Google Scholar
  118. 118.
    Kurth F, Cherbuin N, Luders E. Promising links between meditation and reduced (brain) aging: an attempt to bridge some gaps between the alleged fountain of youth and the youth of the field. Front Psychol. 2017;8Google Scholar
  119. 119.
    Backon J, Matamoros N, Ramirez M, et al. A functional vagotomy induced by unilateral forced right nostril breathing decreases intraocular pressure in open and closed angle glaucoma. Br J Ophthalmol. 1990;74:607–9.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Newberg AB, Iversen J. The neural basis of the complex mental task of meditation: neurotransmitter and neurochemical considerations. Med Hypotheses. 2003;61:282–91.PubMedCrossRefGoogle Scholar
  121. 121.
    Harte JL, Eifert GH, Smith R. The effects of running and meditation on beta-endorphin, corticotropin-releasing hormone and cortisol in plasma, and on mood. Biol Psychol. 1995;40:251–65.PubMedCrossRefGoogle Scholar
  122. 122.
    Jin J, Xu G, Yuan Z. Influence of the hypothalamic arcuate nucleus on intraocular pressure and the role of opioid peptides. PLoS One. 2014;9:e82315.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Sudsuang R, Chentanez V, Veluvan K. Effect of Buddhist meditation on serum cortisol and total protein levels, blood pressure, pulse rate, lung volume and reaction time. Physiol Behav. 1991;50:543–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Park J, Lyles RH, Bauer-Wu S. Mindfulness meditation lowers muscle sympathetic nerve activity and blood pressure in African-American males with chronic kidney disease. American journal of physiology-regulatory. Integr Comp Physiol. 2014;307:R93–101.CrossRefGoogle Scholar
  125. 125.
    Tanito M, Kaidzu S, Takai Y, et al. Correlation between systemic oxidative stress and intraocular pressure level. PLoS One. 2015;10:e0133582.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Coca-Prados M, Escribano J. New perspectives in aqueous humor secretion and in glaucoma: the ciliary body as a multifunctional neuroendocrine gland. Prog Retin Eye Res. 2007;26:239–62.PubMedCrossRefGoogle Scholar
  127. 127.
    Craigmyle NA. The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus. Front Psychol. 2013;4:731.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Rosenkranz MA, Lutz A, Perlman DM, et al. Reduced stress and inflammatory responsiveness in experienced meditators compared to a matched healthy control group. Psychoneuroendocrinology. 2016;68:117–25.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Kemper KJ, Powell D, Helms CC, et al. Loving-kindness meditation’s effects on nitric oxide and perceived well-being: a pilot study in experienced and inexperienced meditators. Explore: J Sci Healing. 2015;11:32–9.CrossRefGoogle Scholar
  130. 130.
    Behar-Cohen FF, Goureau O, D'Hermies F, et al. Decreased intraocular pressure induced by nitric oxide donors is correlated to nitrite production in the rabbit eye. Invest Ophthalmol Vis Sci. 1996;37:1711–5.PubMedGoogle Scholar
  131. 131.
    Mohandas E. Neurobiology of spirituality. Mens Sana Monographs. 2008;6:63.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Newberg AB, Wintering N, Khalsa DS, et al. Meditation effects on cognitive function and cerebral blood flow in subjects with memory loss: a preliminary study. J Alzheimers Dis. 2010;20:517–26.PubMedCrossRefGoogle Scholar
  133. 133.
    Kaliman P, Álvarez-López MJ, Cosín-Tomás M, et al. Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology. 2014;40:96–107.PubMedCrossRefGoogle Scholar
  134. 134.
    Tang YY, Ma Y, Wang J, et al. Short-term meditation training improves attention and self-regulation. Proc Natl Acad Sci. 2007;104:17152–6.PubMedCrossRefGoogle Scholar
  135. 135.
    Ospina MB, Bond K, Karkhaneh M, et al. Meditation practices for health: state of the research. Evid Rep Technol Assess (Full Rep). 2007;155:1–263.Google Scholar
  136. 136.
    Wu SD, Lo PC. Inward-attention meditation increases parasympathetic activity: a study based on heart rate variability. Biomed Res. 2008;29:245–50.PubMedCrossRefGoogle Scholar
  137. 137.
    Grossman P, Niemann L, Schmidt S, et al. Mindfulness-based stress reduction and health benefits: a meta-analysis. J Psychosom Res. 2004;57:35–43.PubMedCrossRefGoogle Scholar
  138. 138.
    Netam R, Yadav RK, Khadgawat R, et al. Interleukin-6, vitamin D & diabetes risk-factors modified by a short-term yoga-based lifestyle intervention in overweight/obese individuals. Indian J Med Res. 2015;141:775.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Sharma P, Poojary G, Dwivedi SN, et al. Effect of yoga-based intervention in patients with inflammatory bowel disease. Int J Yoga Therapy. 2015;25:101–12.CrossRefGoogle Scholar
  140. 140.
    Kemper KJ, Danhauer SC. Music as therapy. Southern Med J. 2005;98:282–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Umemura M, Honda K. Influence of music on heart rate variability and comfort. J Hum Ergol. 1998;27:30–8.Google Scholar
  142. 142.
    White JM. Effects of relaxing music on cardiac autonomic balance and anxiety after acute myocardial infarction. Am J Crit Care. 1999;8:220.PubMedGoogle Scholar
  143. 143.
    Pelletier CL. The effect of music on decreasing arousal due to stress: a meta-analysis. J Music Ther. 2004;41:192–214.PubMedCrossRefGoogle Scholar
  144. 144.
    Knight WEJ, Rickard NS. Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females. J Music Ther. 2001;38:254–72.PubMedCrossRefGoogle Scholar
  145. 145.
    Mckee MG. Biofeedback: an overview in the context of heart-brain medicine. Cleve Clin J Med. 2008;75:S31.PubMedCrossRefGoogle Scholar
  146. 146.
    Amore FM, Paliotta S, Silvestri V, et al. Biofeedback stimulation in patients with age-related macular degeneration: comparison between 2 different methods. Can J Ophthalmology/J Can d'Ophtalmologie. 2013;48:431–7.CrossRefGoogle Scholar
  147. 147.
    Moser DK, Dracup K, Woo MA, et al. Voluntary control of vascular tone by using skin-temperature biofeedback-relaxation in patients with advanced heart failure. Altern Ther Health Med. 1997;3:51–9.PubMedGoogle Scholar
  148. 148.
    Bernat SH, Wooldridge PJ, Marecki M, et al. Biofeedback-assisted relaxation to reduce stress in labor. J Obstet Gynecol Neonatal Nurs. 1992;21:295–303.PubMedCrossRefGoogle Scholar
  149. 149.
    Del Pozo JM, Gevirtz RN, Scher B, et al. Biofeedback treatment increases heart rate variability in patients with known coronary artery disease. Am Heart J. 2004;147:545.CrossRefGoogle Scholar
  150. 150.
    Kaluza G, Strempel I. Effects of self-relaxation methods and visual imagery on IOP in patients with open-angle glaucoma. Ophthalmologica. 1995;209:122–8.PubMedCrossRefGoogle Scholar
  151. 151.
    Kaluza G, Strempel I, Maurer H. Stress reactivity of intraocular pressure after relaxation training in open-angle glaucoma patients. J Behav Med. 1996;19:587–97.PubMedCrossRefGoogle Scholar
  152. 152.
    Bittner AK, Edwards L, George M. Coping strategies to manage stress related to vison loss and fluctuations in retinitis pigmentosa. Optom-J Am Optom Assoc. 2010;81:461–8.CrossRefGoogle Scholar
  153. 153.
    Ben-Zur H, Debi Z. Optimism, social comparisons, and coping with vision loss in Israe. J Visual Impair Blindness. 2005;99:151.Google Scholar
  154. 154.
    Dreer LE, Elliott TR, Fletcher DC, et al. Social problem-solving abilities and psychological adjustment of persons in low vision rehabilitation. Rehabil Psychol. 2005;50:232.CrossRefGoogle Scholar
  155. 155.
    Garnefski N, Kraaij V, De Graaf M, et al. Psychological intervention targets for people with visual impairments: the importance of cognitive coping and goal adjustment. Disabil Rehabil. 2010;32:142–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Bryan JL, Lu Q. Vision for improvement: expressive writing as an intervention for people with Stargardt's disease, a rare eye disease. Journal of Health Psychol. 2016;21:709–19.CrossRefGoogle Scholar
  157. 157.
    Stelmack J. Quality of life of low-vision patients and outcomes of low-vision rehabilitation. Optom Vision Sci. 2001;78:335–42.CrossRefGoogle Scholar
  158. 158.
    Lindenberg RE. Work with families in rehabilitation. Rehabil Couns Bull. 1977;21:(1):67–76.Google Scholar
  159. 159.
    Moore JE. Impact of family attitudes toward blindness/visual impairment on the rehabilitation process. J Visual Impair Blindness. 1984;78:100–6.Google Scholar
  160. 160.
    Reinhardt JP. The importance of friendship and family support in adaptation to chronic vision impairment. J Gerontol Ser B Psychol Sci Soc Sci. 1996;51:P268–78.CrossRefGoogle Scholar
  161. 161.
    Cimarolli VR, Boerner K. Social support and well-being in adults who are visually impaired. J Visual Impair Blindness. 2005;99:521.Google Scholar
  162. 162.
    Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23.Google Scholar
  163. 163.
    Zhang X, Bullard KMK, Cotch MF, et al. Association between depression and functional vision loss in persons 20 years of age or older in the United States, NHANES 2005-2008. JAMA Ophthalmol. 2013;131:573–81.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Burmedi D, Becker S, Heyl V, et al. I Emotional and social consequences of age-related low vision: a narrative review Visual Impairment Research 2002;4:47–71.Google Scholar
  165. 165.
    Brennan M. Spirituality and psychosocial development in middle-age and older adults with vision loss. J Adult Dev. 2002;9:31–46.CrossRefGoogle Scholar
  166. 166.
    Rovner BW, Casten RJ, Tasman WS. Effect of depression on vision function in age-related macular degeneration. Arch Ophthalmol. 2002;120:1041–4.PubMedCrossRefGoogle Scholar
  167. 167.
    Wulsin LR, Jacobson AM, Rand LI. Psychosocial correlates of mild visual loss. Psychosom Med. 1991;53:109–17.PubMedCrossRefGoogle Scholar
  168. 168.
    Wahl HW, Kämmerer A, Holz F, et al. Psychosocial intervention for age-related macular degeneration: a pilot project. J Visual Impair Blindness. 2006;100:533.Google Scholar
  169. 169.
    Packwood EA, Cruz OA, Rychwalski PJ, et al. The psychosocial effects of amblyopia study. J Am Assoc Pediatr Ophthalmol Strabismus. 1999;3:15–7.CrossRefGoogle Scholar
  170. 170.
    Rees G, Tee HW, Marella M, et al. Vision-specific distress and depressive symptoms in people with vision impairment. Invest Ophthalmol Vis Sci. 2010;51:2891–6.PubMedCrossRefGoogle Scholar
  171. 171.
    Huurre TM, Aro HM. Psychosocial development among adolescents with visual impairment. Eur Child Adolesc Psychiatry. 1998;7:73–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Yochim BP, Mueller AE, Kane KD, et al. Prevalence of cognitive impairment, depression, and anxiety symptoms among older adults with glaucoma. J Glaucoma. 2012;21:250–4.PubMedCrossRefGoogle Scholar
  173. 173.
    Erb C, Batra A, Lietz A, et al. Psychological characteristics of patients with normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 1999;237:753–7.PubMedCrossRefGoogle Scholar
  174. 174.
    Zhou C, Qian S, Wu P, et al. Anxiety and depression in Chinese patients with glaucoma: sociodemographic, clinical, and self-reported correlates. J Psychosom Res. 2013;75:75–82.PubMedCrossRefGoogle Scholar
  175. 175.
    Jampel HD, Frick KD, Janz NK, et al. Depression and mood indicators in newly diagnosed glaucoma patients. Am J Ophthalmol. 2007;144:238–44.PubMedCrossRefGoogle Scholar
  176. 176.
    Piers G. Glaucoma: the ten-year report 1932–42 Chicago Institute for Psychoanalysis. Quoted in: Alexander F, French TM, eds. Studies in psychosomatic medicine. New York: Ronald; 1948.Google Scholar
  177. 177.
    Pappa C, Hyphantis T, Pappa S, et al. Psychiatric manifestations and personality traits associated with compliance with glaucoma treatment. J Psychosom Res. 2006;61:609–17.PubMedCrossRefGoogle Scholar
  178. 178.
    Eramudugolla R, Wood J, Anstey KJ. Co-morbidity of depression and anxiety in common age-related eye diseases: a population-based study of 662 adults. Front Aging Neurosci. 2013;5:56.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Wang JJ, Mitchell P, Simpson JM, et al. Visual impairment, age-related cataract, and mortality. Arch Ophthalmol. 2001;119:1186–90.PubMedCrossRefGoogle Scholar
  180. 180.
    Scott JA, Egan RA. Prevalence of organic neuro-ophthalmologic disease in patients with functional visual loss. Am J Ophthalmol. 2003;135:670–5.PubMedCrossRefGoogle Scholar
  181. 181.
    Hallemani S, Kale M, Gholap M. Level of stress and coping strategies adopted by adolescents with visual impairment. International Journal of Science and Research. 2012;Paper ID:020141262.Google Scholar
  182. 182.
    Lee PP, Walt JW, Rosenblatt LC, et al. Association between intraocular pressure variation and glaucoma progression: data from a United States chart review. Am J Ophthalmol. 2007;144:901–7.e1.PubMedCrossRefGoogle Scholar
  183. 183.
    Rivera JL, Bell NP, Feldman RM. Risk factors for primary open angle glaucoma progression: what we know and what we need to know. Curr Opin Ophthalmol. 2008;19:102–6.PubMedCrossRefGoogle Scholar
  184. 184.
    Recupero SM, Contestabile MT, Taverniti L, et al. Open-angle glaucoma: variations in the intraocular pressure after visual field examination. J Glaucoma. 2003;12:114–8.PubMedCrossRefGoogle Scholar
  185. 185.
    Lee AJ, Saw SM, Gazzard G, et al. Intraocular pressure associations with refractive error and axial length in children. Br J Ophthalmol. 2004;88:5–7.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Sauerborn G, Schmitz M, Franzen U, et al. Stress and intraocular pressure in myopes. Psychol Health. 1992;6:61–8.CrossRefGoogle Scholar
  187. 187.
    Grom E, Flazs O, Rozen AC. Personality of glaucoma patients as shown by psychological testing. Glaucoma. 1981;3:167–8.Google Scholar
  188. 188.
    Amihai I, Kozhevnikov M. The influence of Buddhist meditation traditions on the autonomic system and attention. BioMed Research International. 2015.Google Scholar
  189. 189.
    Erb C, Thiel HJ, Flammer J. The psychology of the glaucoma patient. Curr Opin Ophthalmol. 1998;9:65–70.PubMedCrossRefGoogle Scholar
  190. 190.
    Kemeny ME. The psychobiology of stress. Curr Dir Psychol Sci. 2003;12:124–9.CrossRefGoogle Scholar
  191. 191.
    Kloet E. Corticosteroids, stress, and aging. Ann N Y Acad Sci. 1992;663:357–71.PubMedCrossRefGoogle Scholar
  192. 192.
    Ritvanen T, Louhevaara V, Helin P, et al. Responses of the autonomic nervous system during periods of perceived high and low work stress in younger and older female teachers. Appl Ergon. 2006;37:311–8.PubMedCrossRefGoogle Scholar
  193. 193.
    Gherezghiher T, Hey JA, Koss MC. Parasympathetic nervous control of intraocular pressure. Exp Eye Res. 1990;50:457–62.PubMedCrossRefGoogle Scholar
  194. 194.
    Emmerich GM. Psychosomatische Symptome bei rein somatischen Krankheiten unter anderem am Beispiel eines chronischen Offenwinkelglaukoms. Klin Monatsbl Augenheilkd. 2010;227:638–45.PubMedCrossRefGoogle Scholar
  195. 195.
    Warrian KJ, Spaeth GL, Lankaranian D, et al. The effect of personality on measures of quality of life related to vision in glaucoma patients. Br J Ophthalmol. 2009;93:310–5.PubMedCrossRefGoogle Scholar
  196. 196.
    Beatty S. Non-organic visual loss. Postgrad Med J. 1999;75:201–7.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Werring DJ, Weston L, Bullmore ET, et al. Functional magnetic resonance imaging of the cerebral response to visual stimulation in medically unexplained visual loss. Psychol Med. 2004;34:583–9.PubMedCrossRefGoogle Scholar
  198. 198.
    Burggraaff MC, van Nispen RMA, Knol DL, et al. Randomized controlled trial on the effects of CCTV training on quality of life, depression, and adaptation to vision LossRCT on effects of CCTV training. Invest Ophthalmol Vis Sci. 2012;53:3645–52.PubMedCrossRefGoogle Scholar
  199. 199.
    Galvin JA, Benson H, Deckro GR, et al. The relaxation response: reducing stress and improving cognition in healthy aging adults. Complement Ther Clin Pract. 2006;12:186–91.PubMedCrossRefGoogle Scholar
  200. 200.
    Vøllestad J, Sivertsen B, Nielsen GH. Mindfulness-based stress reduction for patients with anxiety disorders: evaluation in a randomized controlled trial. Behav Res Ther. 2011;49:281–8.PubMedCrossRefGoogle Scholar
  201. 201.
    Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5:374–81.PubMedCrossRefGoogle Scholar
  202. 202.
    Matousek RH, Dobkin PL, Pruessner J. Cortisol as a marker for improvement in mindfulness-based stress reduction. Complement Ther Clin Pract. 2010;16:13–9.PubMedCrossRefGoogle Scholar
  203. 203.
    Sehgal M. Yoga for health. SENSE. 2011;1(1):322–27.Google Scholar
  204. 204.
    Haymes S, Guest D, Heyes A, et al. Mobility of people with retinitis pigmentosa as a function of vision and psychological variables. Optom Vision Sci. 1996;73:621–37.CrossRefGoogle Scholar
  205. 205.
    McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105–22.PubMedCrossRefGoogle Scholar
  206. 206.
    Gupta V, Dutta P, Mary OV, et al. Effect of glaucoma on the quality of life of young patients. Invest Ophthalmol Vis Sci. 2011;52:8433–7.PubMedCrossRefGoogle Scholar
  207. 207.
    Weitzman ED, Henkind P, Leitman M, et al. Correlatie 24-hour relationships between intraocular pressure and plasma cortisol in normal subjects and patients with glaucoma. Br J Ophthalmol. 1975;59:566.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Dampney RAL. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am J Phys Regul Integr Comp Phys. 2015;309:R429–43.Google Scholar
  209. 209.
    Nordmann JP, Auzanneau N, Ricard S, et al. Vision related quality of life and topical glaucoma treatment side effects. Health Qual Life Outcomes. 2003;1:75.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Keyworth C, Knopp J, Roughley K, et al. A mixed-methods pilot study of the acceptability and effectiveness of a brief meditation and mindfulness intervention for people with diabetes and coronary heart disease. Behav Med. 2014;40:53–64.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Manchanda SC, Madan K. Yoga and meditation in cardiovascular disease. Clin Res Cardiol. 2014;103:675–80.PubMedCrossRefGoogle Scholar
  212. 212.
    Hayman KJ, Kerse NM, La Grow SJ, et al. Depression in older people: visual impairment and subjective ratings of health. Optom Vision Sci. 2007;84:1024–30.CrossRefGoogle Scholar
  213. 213.
    Méndez-Ulrich JL, Sanz A. Psycho-ophthalmology: contributions of health psychology to the assessment and treatment of glaucoma. Psychol Health. 2017;32:330–42.PubMedCrossRefGoogle Scholar
  214. 214.
    Niklewski G. Psychosomatische Erkrankungen des Auges: Eine Übersicht. Z Psychosom Med Psychoanal. 1982:300–16.Google Scholar
  215. 215.
    Grant P, Seiple W, Szlyk JP. Effect of depression on actual and perceived effects of reading rehabilitation for people with central vision loss. J Rehabil Res Dev. 2011;48:1101.PubMedCrossRefGoogle Scholar
  216. 216.
    Barris MC, Kaufman DI, Barberio D. Visual impairment in hysteria. Doc Ophthalmol. 1992;82:369–82.PubMedCrossRefGoogle Scholar
  217. 217.
    Khan AO. Severe psychogenic visual loss in a girl with siblings blinded from congenital glaucoma. JAm Assoc Pediatr Ophthalmol Strabismus. 2006;10:373–4.CrossRefGoogle Scholar
  218. 218.
    Taich A, Crowe S, Kosmorsky GS, et al. Prevalence of psychosocial disturbances in children with nonorganic visual loss. J Am Assoc Pediatr Ophthalmol Strabismus. 2004;8:457–61.CrossRefGoogle Scholar
  219. 219.
    Toldo I, Pinello L, Suppiej A, et al. Nonorganic (psychogenic) visual loss in children: a retrospective series. J Neuroophthalmol. 2010;30:26–30.PubMedCrossRefGoogle Scholar
  220. 220.
    Cohen SI, Hajioff J. Life events and the onset of acute closed-angle glaucoma. J Psychosom Res. 1972;16:335–41.PubMedCrossRefGoogle Scholar
  221. 221.
    Inman WS. Emotion and acute glaucoma. Lancet. 1929;214:1188–9.CrossRefGoogle Scholar
  222. 222.
    Ripley HS, Wolff HG. Life situations, emotions, and glaucoma. Psychosom Med. 1950;12:215–24.PubMedCrossRefGoogle Scholar
  223. 223.
    Grignolo FM, Bongioanni C, Carenini BB. Variations of intraocular pressure induced by psychological stress. Klin Monatsbl Augenheilkd. 1977;170:562.PubMedGoogle Scholar
  224. 224.
    Weinstein P, Dobossy M. The psychosomatic factors in ophthalmology (author's transl). Klin Monatsbl Augenheilkd. 1975;166:537–9.PubMedGoogle Scholar
  225. 225.
    Dane ŞE, Kocer I, Demirel H, et al. Effect of acute submaximal exercise on intraocular pressure in athletes and sedentary subjects. Int J Neurosci. 2006;116:1223–30.PubMedCrossRefGoogle Scholar
  226. 226.
    Moschos MM. Physiology and psychology of vision and its disorders: a review. Medical hypothesis, discovery and innovation in. Ophthalmology. 2014;3:83.Google Scholar
  227. 227.
    Beining G. Zur Psychotherapie des Glaukoms. Psychother Medizin Psychologie. 1951;1:59–63.Google Scholar
  228. 228.
    Berger AS. The emotional factor in glaucoma: a review. Eye Ear Nose Throat Mon. 1960;39:166–70.Google Scholar
  229. 229.
    Böhringer HR, Müller C, Meerwein F. Psychiatry of primary glaucoma in relatively younger patients. KlinMonatsbl Augenheilkunde. 1953;123(3):283–302.Google Scholar
  230. 230.
    Flammer J. Kinderophthalmologie-Auge und Allgemeinerkrankungen. Auge und Psyche. 1999:215–24.Google Scholar
  231. 231.
    Schultz-Zehden W. Psychosomatische Einflüsse auf das Glaukom. Das autogene Training als unterstützende Therapie. Augenspiegel Heft. 1975;2:2–7.Google Scholar
  232. 232.
    Abateneh A, Tesfaye M, Bekele S, et al. Vision loss and psychological distress among Ethiopians adults: a comparative cross-sectional study. PLoS One. 2013;8:e78335.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Thurston M, Thurston A, McLeod J. Socio-emotional effects of the transition from sight to blindness. Br J Vis Impair. 2010;28:90–112.CrossRefGoogle Scholar
  234. 234.
    Srees S, Fear NT. Psychosocial impact of visual impairment and coping strategies in female ex-service personnel. J R Army Med Corps. 2016;162:129–33.CrossRefGoogle Scholar
  235. 235.
    Casten RJ, Rovner BW, Tasman W. Age-related macular degeneration and depression: a review of recent research. Curr Opin Ophthalmol. 2004;15:181–3.PubMedCrossRefGoogle Scholar
  236. 236.
    Nyman SR, Gosney MA, Victor CR. The psychosocial impact of vision loss on older people. Depression. 2010;2:98.Google Scholar
  237. 237.
    Carrieri PB, Gentile S, Fusco R, et al. Mood disorders in patients with chronic simple glaucoma. Psychiatry Res. 1991;36:233–5.PubMedCrossRefGoogle Scholar
  238. 238.
    Bambara JK, Owsley C, Wadley V, et al. Family caregiver social problem-solving abilities and adjustment to caring for a relative with vision loss. Invest Ophthalmol Vis Sci. 2009;50:1585–92.PubMedCrossRefGoogle Scholar
  239. 239.
    Altangerel U, Spaeth GL, Rhee DJ. Visual function, disability, and psychological impact of glaucoma. Curr Opin Ophthalmol. 2003;14:100–5.PubMedCrossRefGoogle Scholar
  240. 240.
    Teoli DA, Smith MD, Leys MJ, et al. Visual function affects prosocial behaviors in older adults. Int Ophthalmol. 2016;36:45–54.PubMedCrossRefGoogle Scholar
  241. 241.
    Vu HTV, Keeffe JE, McCarty CA, et al. Impact of unilateral and bilateral vision loss on quality of life. Br J Ophthalmol. 2005;89:360–3.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Keeffe J. Psychosocial impact of vision impairment. Elsevier. 2005;1282:167–73.Google Scholar
  243. 243.
    Teitelman J, Copolillo A. Psychosocial issues in older adults’ adjustment to vision loss: findings from qualitative interviews and focus groups. Am J Occup Ther. 2005;59:409–17.PubMedCrossRefGoogle Scholar
  244. 244.
    Heine C, Browning CJ. Communication and psychosocial consequences of sensory loss in older adults: overview and rehabilitation directions. Disabil Rehabil. 2002;24:763–73.PubMedCrossRefGoogle Scholar
  245. 245.
    Datta P. Self-concept and vision impairment: a review. Br J Vis Impair. 2014;32:200–10.CrossRefGoogle Scholar
  246. 246.
    Seybold D. The psychosocial impact of acquired vision loss—particularly related to rehabilitation involving orientation and mobility. Elsevier. 2005;1282:298–301.Google Scholar
  247. 247.
    Scott IU, Smiddy WE, Schiffman J, et al. Quality of life of low-vision patients and the impact of low-vision services. Am J Ophthalmol. 1999;128:54–62.PubMedCrossRefGoogle Scholar
  248. 248.
    Langelaan M, de Boer MR, van Nispen RMA, et al. Impact of visual impairment on quality of life: a comparison with quality of life in the general population and with other chronic conditions. Ophthalmic Epidemiol. 2007;14:119–26.PubMedCrossRefGoogle Scholar
  249. 249.
    Denollet J. DS14: standard assessment of negative affectivity, social inhibition, and type D personality. Psychosom Med. 2005;67:89–97.PubMedCrossRefGoogle Scholar
  250. 250.
    Lim MC, Shiba DR, Clark IJ, et al. Personality type of the glaucoma patient. J Glaucoma. 2007;16:649–54.PubMedCrossRefGoogle Scholar

Copyright information

© European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2018

Authors and Affiliations

  • Bernhard A. Sabel
    • 1
    Email author
  • Jiaqi Wang
    • 1
  • Lizbeth Cárdenas-Morales
    • 1
  • Muneeb Faiq
    • 2
    • 3
  • Christine Heim
    • 4
    • 5
  1. 1.Institute of Medical Psychology, Medical FacultyOtto von Guericke University of MagdeburgMagdeburgGermany
  2. 2.Dr. Rajendra Prasad Centre for Ophthalmic SciencesAll India Institute of Medical SciencesNew DelhiIndia
  3. 3.Department of Ophthalmology, NYU Langone HealthNew York University School of MedicineNew YorkUSA
  4. 4.Berlin Institute of Health (BIH), Institute of Medical PsychologyCharité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu BerlinBerlinGermany
  5. 5.Department of Biobehavioral HealthThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations