Organic Agriculture

, Volume 9, Issue 2, pp 155–164 | Cite as

Exemplary calculations of native thiamine (vitamin B1) and riboflavin (vitamin B2) contents in common cereal-based diets for monogastric animals

  • Stephanie WittenEmail author
  • Karen Aulrich


B vitamins, such as thiamine and riboflavin, are often supplemented in diets for farm animals to prevent deficiencies. However, information on the content of these two B vitamins in organic feedstuffs is scarce. Recently, up-to-date information was published by our group. The objective of this work was to use present data to determine the native contents of thiamine and riboflavin in diets used for monogastric animal feeding in organic farming. We used the results of our recent study on the native thiamine and riboflavin contents of organic wheat (Triticum aestivum L.), rye (Secale cereale L.), triticale (Triticosecale L.), barley (Hordeum vulgare L.), oats (Avena sativa L.), field peas (Pisum sativum L.), field beans (Vicia faba L.), and blue lupins (Lupinus angustifolius L.) from various variety field trials, which were conducted throughout Germany over 3 years, to calculate the minimum and maximum native amounts of thiamine and riboflavin in exemplary practical diets for swine and poultry. We found that exemplary common cereal-based diets in organic farming exceeded the thiamine recommendations for swine and poultry. However, riboflavin was deficient in most exemplary diets. To increase native riboflavin contents in the diet (i.e. for 100% organic diets), feedstuffs other than cereals and home-grown grain legumes are needed in monogastric animal feeding. In organic farming, roughage plays an important role. The inclusion of grass-clover silage has the potential to increase the native riboflavin contents in the diet. Evaluation of the use of grassland-derived or other products as suppliers of B vitamins, especially for monogastric animal feeding in organic farming, seems promising to improve riboflavin supply.


Grain legumes Cereals Swine Poultry 



This research was funded by the German Federal Ministry of Food and Agriculture (BMEL; grant number 2811OE054).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Albers N, Gotterbarm G, Heimbeck W, Keller T, Seehawer J, Tran TD (2002) Vitamins in animal nutrition. ERLING Verlag GmbH & Co, ClenzeGoogle Scholar
  2. Baldinger L, Bussemas R, Höinghaus K, Renger A, Weißmann F (2017) Effect of six 100% organic feeding strategies differing in external input demand on animal performance and production costs of piglets before and after weaning. Org Agric 7:267–279. CrossRefGoogle Scholar
  3. Bellof G, Schmidt E, Ristic M (2005) Einfluss abgestufter Aminosäuren-Energie-Verhältnisse im Futter auf die Mastleistung und den Schlachtkörperwert einer langsam wachsenden Herkunft in der ökologischen Broilermast [Effect of graded essential amino acids to energy ratios in diets for organic chicken production on fattening performance and carcass yield]. Arch Geflugelkd 69:252–260Google Scholar
  4. Blair R (2008) Nutrition and feeding of organic poultry. CABI, OxfordshireCrossRefGoogle Scholar
  5. Blair R, Newsome F (1985) Involvement of water-soluble vitamins in diseases of swine. J Anim Sci 60:1508–1517. CrossRefGoogle Scholar
  6. Burgess CM, Smid EJ, van Sinderen D (2009) Bacterial vitamin B2, B11 and B12 overproduction: an overview. Int J Food Microbiol 133:1–7. CrossRefGoogle Scholar
  7. Capozzi V, Russo P, Dueñas MT, López P, Spano G (2012) Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. Appl Microbiol Biotechnol 96:1383–1394. CrossRefGoogle Scholar
  8. Carlson D, Lærke HN, Poulsen HD, Jørgensen H (1999) Roughages for growing pigs, with emphasis on chemical composition, ingestion and faecal digestibility. Acta Agric Scand Sect A Anim Sci 49:129–136. Google Scholar
  9. Crawley K (2015a) Fulfilling 100% organic poultry diets: roughage and foraging from the range. In: Smith J, Gerrard CL, Sumption P (eds) ICOPP Technical Note, Organic Research Center UKGoogle Scholar
  10. Crawley K (2015b) Fulfilling 100% organic pig diets: roughage and foraging from the range. In: Smith J, Gerrard CL, Sumption P (eds) ICOPP Technical Note, Organic Research Center UKGoogle Scholar
  11. de Lange CFM (2013) New NRC (2012) nutrient requirements of swine. Advances in Pork Production 24:17–28Google Scholar
  12. Deerberg F (2000) Geflügelfütterung im ökologischen Landbau [Poultry feeding in organic farming]. Gaea-Journal 4. Accessed 12 Dec 2017
  13. Depeint F, Bruce WR, Shangari N, Mehta R, O’Brien PJ (2006) Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact 163:94–112. CrossRefGoogle Scholar
  14. EC (2007) Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labeling of organic products and repealing Regulation (EEC) No 2092/91Google Scholar
  15. EC (2008) Commision Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labeling of organic products with regard to organic production, labeling and controlGoogle Scholar
  16. Edwards SA (2003) Intake of nutrients from pasture by pigs. Proc Nutr Soc 62:257–265. CrossRefGoogle Scholar
  17. Fattal-Valevski A (2011) Thiamine (vitamin B1). Evid Based Complement Alternat Med 16:12–20. CrossRefGoogle Scholar
  18. Finglas PM (2003) Vitamins. pp. 6046-6053Google Scholar
  19. Flamme W, Kurpjun C, Seddig S, Jansen G, Jürgens H-U (2003) Gekeimte Samen als Futtermittel—Analytik [Germinated seeds as feedstuffs—analytics]. Julius Kühn-Institute (JKI), SanitzGoogle Scholar
  20. GfE (1999) Empfehlungen zur Energie- und Nährstoffversorgung der Legehennen und Masthühner (Broiler). DLG Verlag, Frankfurt a. MGoogle Scholar
  21. GfE (2006) Empfehlungen zur Energie- und Nährstoffversorgung von Schweinen. DLG Verlag, Frankfurt a. MGoogle Scholar
  22. Gołda A, Szyniarowski P, Ostrowska K, Kozik A, Rąpała-Kozik M (2004) Thiamine binding and metabolism in germinating seeds of selected cereals and legumes. Plant Physiol Biochem 42:187–195. CrossRefGoogle Scholar
  23. Hovi M, Sundrum A, Thamsborg SM (2003) Animal health and welfare in organic livestock production in Europe: current state and future challenges. Livest Prod Sci 80:41–53. CrossRefGoogle Scholar
  24. Jeroch H, Drochner W, Simon O (2008) Ernährung landwirtschaftlicher Nutztiere [Nutrition of Farm Animals]. Eugen Ulmer KG, StuttgartGoogle Scholar
  25. Jeroch H, Kozlowski K, Jankowski J (2011) Versorgung des Geflügels mit Energie und Nährstoffen aus der Sicht nationaler und internationaler Empfehlungen [National and international recommendations for the energy and nutrient supply of poultry]. Arch Geflugelkd 75:217–225Google Scholar
  26. Jeroch H, Simon A, Zentek J (2012) Geflügelernährung [Poultry nutrition]. Ulmer Verlag, StuttgartGoogle Scholar
  27. Lebiedzińska A, Szefer P (2006) Vitamins B in grain and cereal–grain food, soy-products and seeds. Food Chem 95:116–122. CrossRefGoogle Scholar
  28. Lindermayer H, Probstmeier G, Preißinger W, Pieringer E (2011) Fütterungsfibel Ökologische Schweinehaltung [Handbook for organic pig feeding], 3rd edn. Bavarian State Research Institute for Agriculture (LfL), FreisingGoogle Scholar
  29. Marconi E, Panfili G (1998) Chemical composition and nutritional properties of commercial products of Mare milk powder. J Food Compos Anal 11:178–187. CrossRefGoogle Scholar
  30. McDowell LR (2000) Vitamins in animal and human nutrition. Ames, Iowa State University PressCrossRefGoogle Scholar
  31. McDowell LR, Ward NE (2008) Optimum vitamin nutrition for poultry. International Poultry Production 16:27–34Google Scholar
  32. NRC (National Research Council) (1994) Nutrient requirements of poultry, 9th revised edition. National Academie Press, Washington D.CGoogle Scholar
  33. NRC (National Research Council) (2012) Nutrient requirements of swine, 11th revised edition. National Academies Press, Washington D.CGoogle Scholar
  34. Oehen B, Früh B, Schneider C (2011) Alternatives for the substitution of synthetic vitamin B2 or vitamin B2 produced from GMOs. Research Institute of Organic Agriculture (FiBL), CH FrickGoogle Scholar
  35. Peng CL, Heitmann H (1974) The effect of ambient temperature on the thiamin requirement of growing-finishing pigs. Br J Nutr 32:1–9. CrossRefGoogle Scholar
  36. Prodanov M, Sierra I, Vidal-Valverde C (1997) Effect of germination on the thiamine, riboflavin and niacin contents in legumes. Z Lebensm Unters Forsch 205:48–52. CrossRefGoogle Scholar
  37. Revuelta JL, Buey RM, Ledesma-Amaro R, Vandamme E (2016) Microbial biotechnology for the synthesis of (pro)vitamins, biopigments and antioxidants: challenges and opportunities. Microb Biotechnol 9:564–567. CrossRefGoogle Scholar
  38. Revuelta JL, Ledesma-Amaro R, Lozano-Martinez P, Díaz-Fernández D, Buey RM, Jiménez A (2017) Bioproduction of riboflavin: a bright yellow history. J Ind Microbiol Biotechnol 44:659–665. CrossRefGoogle Scholar
  39. Sauvant D, Perez J-M, Tran G (2004) Tables of composition and nutritional value of feed materials: pigs, poultry, cattle, sheep, goats, rabbits, horses, and fish. Wageningen Academic Publishers, WageningenCrossRefGoogle Scholar
  40. Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C (2016) Biotechnology of riboflavin. Appl Microbiol Biotechnol 100:2107–2119. CrossRefGoogle Scholar
  41. Shewry PR, Van Schaik F, Ravel C, Charmet G, Rakszegi M, Bedo Z, Ward JL (2011) Genotype and environment effects on the contents of vitamins B1, B2, B3, and B6 in wheat grain. J Agric Food Chem 59:10564–10571. CrossRefGoogle Scholar
  42. Sierra I, Vidal-Valverde C (1999) Kinetics of free and glycosylated B6 vitaminers, thiamin and riboflavin during germination of pea seeds. J Sci Food Agric 79:307–310.<307::AID-JSFA195>3.0.CO;2-Z CrossRefGoogle Scholar
  43. Skinner JT, Waldroup AL, Waldroup PW (1992) Effects of removal of vitamin and trace mineral supplements from grower and finisher diets on live performance and carcass composition of broilers. J Appl Poult Res 1:280–286. CrossRefGoogle Scholar
  44. Stalljohann G (2006) Untersuchungen zu Fütterungsstrategien für eine erfolgreiche Aufzucht ökologisch gehaltener Ferkel [Analysing feeding strategies for a successful rearing of ecologically fed piglets]. Dissertation, Ludwig-Maximilian-University MunichGoogle Scholar
  45. Stalljohann G, Patzelt S (2007) Report: Vorläufige Versuchsergebnisse bei 100% Öko-Ferkelfütterung [Preliminary results of a trial regarding 100% organic feeding for piglets]. Düsse, Landwirtschaftszentrum (LZ) HausGoogle Scholar
  46. Steinhöfel O, Lippmann I (2005) Futterrationsbeispiele für Ökobetriebe [Examplary diets for organic farms]. Sächsische Landesanstalt für Landwirtschaft (LfL)Google Scholar
  47. Witten S, Aulrich K (2018) Effect of variety and environment on the amount of thiamine and riboflavin in cereals and grain legumes. Anim Feed Sci Technol 238:39–46. CrossRefGoogle Scholar
  48. Witten S, Paulsen HM, Weißmann F, Bussemas R (2014) Praxisbefragung zur Aminosäurelücke und praktische Möglichkeiten zur Verbesserung der Eiweißversorgung der Monogastrier in der Fütterung im Ökologischen Landbau [Survey on practice of the use and availability of protein sources to close amino acid gaps in feeding monogastric animals in organic farming]. Thünen working paper 23Google Scholar
  49. Yamada EA, Sgarbieri VC (2005) Yeast (Saccharomyces cerevisiae) protein concentrate: preparation, chemical composition, and nutritional and functional properties. J Agric Food Chem 53:3931–3936. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Johann Heinrich von Thünen-Institute, Institute of Organic FarmingWesterauGermany

Personalised recommendations