Advertisement

Review of Philosophy and Psychology

, Volume 6, Issue 4, pp 761–778 | Cite as

Nowhere and Everywhere: The Causal Origin of Voluntary Action

  • Aaron Schurger
  • Sebo Uithol
Article

Abstract

The idea that intentions make the difference between voluntary and non-voluntary behaviors is simple and intuitive. At the same time, we lack an understanding of how voluntary actions actually come about, and the unquestioned appeal to intentions as discrete causes of actions offers little if anything in the way of an answer. We cite evidence suggesting that the origin of actions varies depending on context and effector, and argue that actions emerge from a causal web in the brain, rather than a central origin of intentional action. We argue that this causal web need not be confined to the central nervous system, and that proprioceptive feedback might play a counterintuitive role in the decision process. Finally we argue that the complex and dynamic origins of voluntary action and their interplay with the brain’s propensity to predict the immediate future are better studied using a dynamical systems approach.

Keywords

Voluntary Action Intentional Action Supplementary Motor Area Muscle Spindle Movement Onset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Aaron Schurger was supported by a grant from the Association Robert Debre Pour la Recherche Medicale. Sebo Uithol was supported by the EU grant ‘Towards an Embodied Science of Intersubjectivity’ (TESIS, FP7-PEOPLE-2010-ITN, 264828).

References

  1. Albantakis, L., and G. Deco. 2011. Changes of mind in an attractor network of decision-making. PLoS Computational Biology 7(6): e1002086. doi: 10.1371/journal.pcbi.1002086.CrossRefGoogle Scholar
  2. Ames, K.C., S.I. Ryu, and K.V. Shenoy. 2014. Neural dynamics of reaching following incorrect or absent motor preparation. Neuron 81(2): 438–451. doi: 10.1016/j.neuron.2013.11.003.CrossRefGoogle Scholar
  3. Bai, O., V. Rathi, P. Lin, D. Huang, H. Battapady, D.-Y. Fei, et al. 2011. Prediction of human voluntary movement before it occurs. Clinical Neurophysiology 122(2): 364–372. doi: 10.1016/j.clinph.2010.07.010.CrossRefGoogle Scholar
  4. Beer, R. 2000. Dynamical approaches to cognitive science. Trends in Cognitive Sciences 4(3): 91–99.CrossRefGoogle Scholar
  5. Beer, R. 2003. The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11(4): 209.CrossRefGoogle Scholar
  6. Bengson, J.J., T.A. Kelley, X. Zhang, J.-L. Wang, and G.R. Mangun. 2014. Spontaneous neural fluctuations predict decisions to attend. Journal of Cognitive Neuroscience 47: 1–7. doi: 10.2307/2531248.Google Scholar
  7. Blakemore, S.-J., D.M. Wolpert, and C.D. Frith. 2002. Abnormalities in the awareness of action. Trends in Cognitive Sciences 6(6): 237–242. doi: 10.1016/S1364-6613(02)01907-1.CrossRefGoogle Scholar
  8. Bode, S., A.H. He, C.S. Soon, R. Trampel, R. Turner, and J.-D. Haynes. 2011. Tracking the unconscious generation of free decisions using uitra-high field fMRI. PLoS One 6(6): e21612. doi: 10.1371/journal.pone.0021612.CrossRefGoogle Scholar
  9. Bonini, L., M. Maranesi, A. Livi, L. Fogassi, and G. Rizzolatti. 2014. Space-dependent representation of objects and other’s action in monkey ventral premotor grasping neurons. Journal of Neuroscience 34(11): 4108–4119. doi: 10.1523/JNEUROSCI. 4187-13.2014.CrossRefGoogle Scholar
  10. Borra, E., A. Belmalih, R. Calzavara, M. Gerbella, A. Murata, S. Rozzi, and G. Luppino. 2008. Cortical connections of the macaque Anterior Intraparietal (AIP) area. Cerebral Cortex 18(5): 1094–1111.CrossRefGoogle Scholar
  11. Brass, M., and P. Haggard. 2008. The what, when, whether model of intentional action. The Neuroscientist 14(4): 319–325. doi: 10.1177/1073858408317417.CrossRefGoogle Scholar
  12. Bratman, M.E. 1981. Intention and means-end reasoning. The Philosophical Review 90(2): 252–265.CrossRefGoogle Scholar
  13. Bratman, M.E. 1987. Intention, plans, and practical reason. Cambridge: Harvard University Press.Google Scholar
  14. Brooks, R. 1986. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1): 14–23.CrossRefGoogle Scholar
  15. Brooks, R. 1991. Intelligence without representation. Artificial Intelligence 47: 139–159.CrossRefGoogle Scholar
  16. Buhrmann, T., E.A. Di Paolo, and X. Barandiaran. 2013. A dynamical systems account of sensorimotor contingencies. Frontiers in Psychology 4: 285. doi: 10.3389/fpsyg.2013.00285.CrossRefGoogle Scholar
  17. Carota, F., A. Posada, S. Harquel, C. Delpuech, O. Bertrand, and A. Sirigu. 2010. Neural dynamics of the intention to speak. Cerebral Cortex 20(8): 1891–1897. doi: 10.1093/cercor/bhp255.CrossRefGoogle Scholar
  18. Caruana, F., S. Uithol, G. Cantalupo, I. Sartori, Russo, G. Lo, and P. Avanzini. 2014. How action selection can be embodied: Intracranial gamma band recording shows response competition during the Eriksen flankers test. Frontiers in Human Neuroscience 8(668): 1–9. doi: 10.3389/fnhum.2014.00668.Google Scholar
  19. Chen, R., Z. Yaseen, L.G. Cohen, and M. Hallett. 1998. Time course of corticospinal excitability in reaction time and self-paced movements. Annals of Neurology 44(3): 317–325. doi: 10.1002/ana.410440306.CrossRefGoogle Scholar
  20. Churchland, M.M. 2006. Neural variability in premotor cortex provides a signature of motor preparation. Journal of Neuroscience 26(14): 3697–3712. doi: 10.1523/JNEUROSCI. 3762-05.2006.CrossRefGoogle Scholar
  21. Churchland, M.M., J.P. Cunningham, M.T. Kaufman, S.I. Ryu, and K.V. Shenoy. 2010. Cortical preparatory activity: Representation of movement or first cog in a dynamical machine? Neuron 68(3): 387–400. doi: 10.1016/j.neuron.2010.09.015.CrossRefGoogle Scholar
  22. Churchland, M.M., J.P. Cunningham, M.T. Kaufman, J.D. Foster, P. Nuyujukian, S.I. Ryu, and K.V. Shenoy. 2012. Neural population dynamics during reaching. Nature. doi: 10.1038/nature11129.Google Scholar
  23. Cisek, P. 2007. Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B-Biological Sciences 362(1485): 1585–1599. doi: 10.1146/annurev.neuro.20.1.25.CrossRefGoogle Scholar
  24. Cisek, P., and J.F. Kalaska. 2010. Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience 33(1): 269–298. doi: 10.1146/annurev.neuro.051508.135409.CrossRefGoogle Scholar
  25. Deco, G., and R. Romo. 2008. The role of fluctuations in perception. Trends in Neurosciences 31(11): 591–598. doi: 10.1016/j.tins.2008.08.007.CrossRefGoogle Scholar
  26. Dennett, D.C. 2003. Freedom evolves. New York: Viking.Google Scholar
  27. Dennett, D.C., and M. Kinsbourne. 1992. Time and the observer: The where and when of consciousness in the brain. Behavioral and Brain Sciences 15: 183–247.CrossRefGoogle Scholar
  28. Desmurget, M., and A. Sirigu. 2009. A parietal-premotor network for movement intention and motor awareness. Trends in Cognitive Sciences 13(10): 411–419.CrossRefGoogle Scholar
  29. Desmurget, M., K.T. Reilly, N. Richard, A. Szathmari, C. Mottolese, and A. Sirigu. 2009. Movement intention after parietal cortex stimulation in humans. Science 324(5928): 811–813. doi: 10.1126/science.1169896.CrossRefGoogle Scholar
  30. Dimitriou, M., and B.B. Edin. 2010. Human muscle spindles act as forward sensory models. Current Biology 20(19): 1763–1767. doi: 10.1016/j.cub.2010.08.049.CrossRefGoogle Scholar
  31. Domnisoru, C., A.A. Kinkhabwala, and D.W. Tank. 2013. Membrane potential dynamics of grid cells. Nature 495(7440): 199–204. doi: 10.1038/nature11973.CrossRefGoogle Scholar
  32. Dum, R.P., and P.L. Strick. 1991. The origin of corticospinal projections from the premotor areas in the frontal lobe. The Journal of Neuroscience 11(3): 667–689.Google Scholar
  33. Fogassi, L., P.F. Ferrari, B. Gesierich, S. Rozzi, F. Chersi, and G. Rizzolatti. 2005. Parietal lobe: From action organization to intention understanding. Science 308(5722): 662–666.CrossRefGoogle Scholar
  34. Fried, I., R. Mukamel, and G. Kreiman. 2011. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron 69(3): 548–562. doi: 10.1016/j.neuron.2010.11.045.CrossRefGoogle Scholar
  35. Galea, M.P., and I. Darian-Smith. 1994. Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cerebral Cortex 4(2): 166–194. doi: 10.1093/cercor/4.2.166.CrossRefGoogle Scholar
  36. Garcia-Perez, E., A. Mazzoni, and V. Torre. 2007. Spontneous electrical activity and behavior in the the leech Hirudo medicinalis. Frontiers in Integrative Neuroscience 1(8): 1–9.Google Scholar
  37. Gold, J.I., and M.N. Shadlen. 2007. The neural basis of decision making. Annual Review of Neuroscience 30(1): 535–574. doi: 10.1146/annurev.neuro.29.051605.113038.CrossRefGoogle Scholar
  38. Gomes, G. 1999. Volition and the readiness potential. Journal of Consciousness Studies 25(2): 157–181.Google Scholar
  39. Grafton, S.T., and A.F.C. Hamilton. 2007. Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science 26(4): 590–616.CrossRefGoogle Scholar
  40. Graziano, M.S.A., and T.N.S. Aflalo. 2007. Mapping behavioral repertoire onto the cortex. Neuron 56(2): 239–251.CrossRefGoogle Scholar
  41. Graziano, M.S.A., C. Taylor, and T. Moore. 2002. Complex movements evoked by microstimulation of precentral cortex. Neuron 34(5): 841–851.CrossRefGoogle Scholar
  42. Haggard, P. 2005. Conscious intention and motor cognition. Trends in Cognitive Sciences 9(6): 290–295.CrossRefGoogle Scholar
  43. Haggard, P. 2008. Human volition: Towards a neuroscience of will. Nature Reviews. Neuroscience 9(12): 934–946. doi: 10.1038/nrn2497.CrossRefGoogle Scholar
  44. Haggard, P. 2011. Decision time for free will. Neuron 69(3): 404–406. doi: 10.1016/j.neuron.2011.01.028.CrossRefGoogle Scholar
  45. Haggard, P., and M. Eimer. 1999. On the relation between brain potentials and the awareness of voluntary movements. Experimental Brain Research 126(1): 128–133.CrossRefGoogle Scholar
  46. Hamilton, A.F.C., and S.T. Grafton. 2007. The motor hierarchy: From kinematics to goals and intentions. In Attention & performance 22. Sensorimotor foundations of higher cognition attention and performance, ed. P. Haggard, Y. Rossetti, and M. Kawato, 381–408. Oxford: Oxford University Press.Google Scholar
  47. Hasson, U. 2004. Intersubject synchronization of cortical activity during natural vision. Science 303(5664): 1634–1640. doi: 10.1126/science.1089506.CrossRefGoogle Scholar
  48. Haxby, J., M. Gobbini, M. Furey, A. Ishai, J. Schouten, and P. Pietrini. 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539): 2425–2429.CrossRefGoogle Scholar
  49. Haynes, J.-D. 2011. Decoding and predicting intentions. Annals of the New York Academy of Sciences 1224(1): 9–21. doi: 10.1111/j.1749-6632.2011.05994.x.CrossRefGoogle Scholar
  50. He, S.Q., R.P. Dum, and P.L. Strick. 1993. Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. The Journal of Neuroscience 13(3): 952–980.Google Scholar
  51. Hutto, D.D., and E. Myin. 2013. Radicalizing enactivism: Basic minds without content. Cambridge: MIT Press.Google Scholar
  52. Jezek, K., E.J. Henriksen, A. Treves, E.I. Moser, and M.-B. Moser. 2011. Theta-paced flickering between place-cell maps in the hippocampus. Nature 478(7368): 246–249. doi: 10.1038/nature10439.CrossRefGoogle Scholar
  53. Jo, H.-G., T. Hinterberger, M. Wittmann, T.L. Borghardt, and S. Schmidt. 2013. Spontaneous EEG fluctuations determine the readiness potential: Is preconscious brain activation a preparation process to move? Experimental Brain Research 231(4): 495–500. doi: 10.1007/s00221-013-3713-z.CrossRefGoogle Scholar
  54. Kagaya, K., and M. Takahata. 2011. Readiness discharge for spontaneous initiation of walking in crayfish. The Journal of Neuroscience 30(4): 1348–1362.Google Scholar
  55. Kaufman, M.T., M.M. Churchland, S.I. Ryu, and K.V. Shenoy. 2014. Cortical activity in the null space: Permitting preparation without movement. Nature Neuroscience. doi: 10.1038/nn.3643.Google Scholar
  56. Keller, I., and H. Heckhausen. 1990. Readiness potentials preceding spontaneous motor acts: Voluntary vs. involuntary control. Electroencephalography and Clinical Neurophysiology 76(4): 351–361. doi: 10.1016/0013-4694(90)90036-J.CrossRefGoogle Scholar
  57. Kelso, J.A.S. 1995. Dynamic patterns: The self-organization of brain and behavior. Cambridge: MIT Press.Google Scholar
  58. Kiebel, S.J., J. Daunizeau, and K.J. Friston. 2008. A hierarchy of time-scales and the brain. PLoS Computational Biology 4(11): e1000209. doi: 10.1371/journal.pcbi.1000209.CrossRefGoogle Scholar
  59. Kilner, J.M. 2011. More than one pathway to action understanding. Trends in Cognitive Sciences 15(8): 352–357. doi: 10.1016/j.tics.2011.06.005.CrossRefGoogle Scholar
  60. Kistler, M. 2006. La causalité comme transfert et dépendance nomique. Philosophie 89(1): 53–77. doi: 10.3917/philo.089.0053.CrossRefGoogle Scholar
  61. Knobe, J. 2006. The concept of intentional action: A case study in the uses of folk psychology. Philosophical Studies 130(2): 203–231.CrossRefGoogle Scholar
  62. Koechlin, E., and C. Summerfield. 2007. An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences 11(6): 229–235.CrossRefGoogle Scholar
  63. Kornhuber, H.H., and L.D. Deecke. 1965. Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Archiv Für Die Gesamte Physiologie Des Menschen Und Der Tiere 284(1): 1–17. doi: 10.1007/BF00412364.CrossRefGoogle Scholar
  64. Krakauer, J.W., Z.M. Pine, M.-F. Ghilardi, and C. Ghez. 2000. Learning of visuomotor transformations for vectorial planning of reaching trajectories. The Journal of Neuroscience 20(23): 8916–8924.Google Scholar
  65. Krieghoff, V., F. Waszak, W. Prinz, and M. Brass. 2011. Neural and behavioral correlates of intentional actions. Neuropsychologia 49(5): 767–776. doi: 10.1016/j.neuropsychologia.2011.01.025.CrossRefGoogle Scholar
  66. Lafargue, G., and H. Duffau. 2008. Awareness of intending to act following parietal cortex resection. Neuropsychologia 46(11): 2662–2667. doi: 10.1016/j.neuropsychologia.2008.04.019.CrossRefGoogle Scholar
  67. Lau, H.C., R.D.D. Rogers, P. Haggard, and R.E. Passingham. 2004. Attention to intention. Science 303(5661): 1208–1210. doi: 10.1126/science.1090973.CrossRefGoogle Scholar
  68. Lew, E., Chavarriaga, R., Silvoni, S., and J.D.R. Millán. 2012. Detection of self-paced reaching movement intention from EEG signals. Frontiers in Neuroengineering 5(13). doi: 10.3389/fneng.2012.00013
  69. Libet, B., C.A. Gleason, E.W. Wright, and D.K. Pearl. 1983. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential): The unconscious initiation of a freely voluntary act. Brain 106(3): 623–642. doi: 10.1093/brain/106.3.623.CrossRefGoogle Scholar
  70. London, M., et al. 2010. Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466(7302): 123–127.CrossRefGoogle Scholar
  71. Machens, C.K. 2005. Flexible control of mutual inhibition: A neural model of two-interval discrimination. Science 307(5712): 1121–1124. doi: 10.1126/science.1104171.CrossRefGoogle Scholar
  72. Maier, M.A., P.A. Kirkwood, T. Brochier, and R.N. Lemon. 2013. Responses of single corticospinal neurons to intracortical stimulation of primary motor and premotor cortex in the anesthetized macaque monkey. Journal of Neurophysiology 09(12): 2982–2998.Google Scholar
  73. Mason, S.G., and G.E. Birch. 2000. A brain-controlled switch for asynchronous control applications. IEEE Transactions on Bio-Medical Engineering 47(10): 1297–1307. doi: 10.1109/10.871402.CrossRefGoogle Scholar
  74. Mazzoni, A., et al. (2007). On the Dynamics of the Spontaneous Activity in Neuronal Networks. PLoS ONE 2(5): e439.Google Scholar
  75. McFarland, D. 1989. Goals, no-goals and own goals. In Goals, no-goals and own goals: A debate on goal-directed and international behaviour, ed. A. Montefiore and D. Noble, 39–57. London: Unwin Hyman.Google Scholar
  76. Miller, J., P. Shepherdson, and J.A. Trevena. 2011. Effects of clock monitoring on electroencephalographic activity: Is unconscious movement initiation an artifact of the clock? Psychological Science 22(1): 103–109. doi: 10.1177/0956797610391100.CrossRefGoogle Scholar
  77. Murata, A., L. Fadiga, L. Fogassi, V. Gallese, V. Raos, and G. Rizzolatti. 1997. Object representation in the ventral premotor cortex (Area F5) of the monkey. Journal of Neurophysiology 78(4): 2226–2230.Google Scholar
  78. Nilsson, N. 1984. Shakey The Robot, Technical Note 323 Google Scholar
  79. Pacherie, E. 2008. The phenomenology of action: A conceptual framework. Cognition 107(1): 179–217.CrossRefGoogle Scholar
  80. Pacherie, E., and P. Haggard. 2010. What are intentions? In Conscious will and responsibility. A tribute to benjamin libet, ed. W. Sinnott-Armstrong and L. Nadel, 70–84. Oxford: Oxford University Press.CrossRefGoogle Scholar
  81. Peters, A.J., S.X. Chen, and T. Komiyama. 2014. Emergence of reproducible spatiotemporal activity during motor learning. Nature. doi: 10.1038/nature13235.Google Scholar
  82. Quian Quiroga, R., L.H. Snyder, A.P. Batista, H. Cui, and R.A. Andersen. 2006. Movement intention is better predicted than attention in the posterior parietal cortex. Journal of Neuroscience 26(13): 3615–3620. doi: 10.1523/JNEUROSCI. 3468-05.2006.CrossRefGoogle Scholar
  83. Raffi, M. 2005. Functional architecture of spatial attention in the parietal cortex of the behaving monkey. Journal of Neuroscience 25(21): 5171–5186. doi: 10.1523/JNEUROSCI. 5201-04.2005.CrossRefGoogle Scholar
  84. Raffi, M., and R.M. Siegel. 2007. A functional architecture of optic flow in the inferior parietal lobule of the behaving monkey. PLoS ONE 2(2): e200.Google Scholar
  85. Rizzolatti, G., and G. Luppino. 2001. The cortical motor system. Neuron 31(6): 889–901. doi: 10.1016/S0896-6273(01)00423-8.CrossRefGoogle Scholar
  86. Rizzolatti, G., Gentilucci, M., Camarda, R. M., Gallese, V., Luppino, G., Matelli, M., and L. Fogassi. 1990. Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6a?). Experimental Brain Research 82(2). doi: 10.1007/BF00231253
  87. Rozzi, S., R. Calzavara, A. Belmalih, E. Borra, G.G. Gregoriou, M. Matelli, and G. Luppino. 2006. Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cerebral Cortex 16(10): 1389–1417.CrossRefGoogle Scholar
  88. Schurger, A., F. Pereira, A. Treisman, and J.D. Cohen. 2010. Reproducibility distinguishes conscious from nonconscious neural representations. Science 327(5961): 97–99. doi: 10.1126/science.1180029.CrossRefGoogle Scholar
  89. Schurger, A.A., J.D. Sitt, and S.S. Dehaene. 2012. An accumulator model for spontaneous neural activity prior to self-initiated movement. Proceedings of the National Academy of Sciences of the United States of America 109(42): E2904–E2913. doi: 10.1073/pnas.1210467109.CrossRefGoogle Scholar
  90. Searle, J. 1983. Intentionality, an essay in the philosophy of mind. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  91. Selen, L.P.J., M.N. Shadlen, and D.M. Wolpert. 2012. Deliberation in the motor system: Reflex gains track evolving evidence leading to a decision. Journal of Neuroscience 32(7): 2276–2286. doi: 10.1523/JNEUROSCI. 5273-11.2012.CrossRefGoogle Scholar
  92. Shenoy, K. V., Sahani, M., and M.M. Churchland. 2013. Cortical Control of Arm Movements: A Dynamical Systems Perspective. Annual Review of Neuroscience 36(1). doi: 10.1146/annurev-neuro-062111-150509
  93. Sirigu, A., E. Daprati, S. Ciancia, P. Giraux, N. Nighoghossian, A. Posada, and P. Haggard. 2004. Altered awareness of voluntary action after damage to the parietal cortex. Nature Neuroscience 7(1): 80–84. doi: 10.1038/nn1160.CrossRefGoogle Scholar
  94. Soon, C.S., M. Brass, H.-J. Heinze, and J.-D. Haynes. 2008. Unconscious determinants of free decisions in the human brain. Nature Neuroscience 11(5): 543–545. doi: 10.1038/nn.2112.CrossRefGoogle Scholar
  95. Soon, C. S., Hanxi He, A., Bode, S., and J.-D. Haynes. 2013. Predicting free choices for abstract intentions. Proceedings of the National Academy of Sciences 1–6. doi: 10.1073/pnas.1212218110
  96. Thelen, E., and L. Smith. 1994. A dynamic systems approach to the development of cognition and action. Cambridge: MIT Press.Google Scholar
  97. Thompson, E., and F. Varela. 2001. Radical embodiment: Neural dynamics and consciousness. Trends in Cognitive Sciences 5(10): 418–425.CrossRefGoogle Scholar
  98. Trevena, J.A., and J. Miller. 2002. Cortical movement preparation before and after a conscious decision to move. Consciousness and Cognition 11(2): 162–190. doi: 10.1006/ccog.2002.0548.CrossRefGoogle Scholar
  99. Trevena, J.A., and J. Miller. 2010. Brain preparation before a voluntary action: Evidence against unconscious movement initiation. Consciousness and Cognition 19(1): 447–456. doi: 10.1016/j.concog.2009.08.006.CrossRefGoogle Scholar
  100. Uithol, S., and M. Maranesi. 2014. No need to match: A comment on Bach, Nicholson and Hudson’s ‘affordance-matching hypothesis’. Frontiers in Human Neuroscience 8(710): 1–2. doi: 10.3389/fnhum.2014.00710.Google Scholar
  101. Uithol, S., and M. Paulus. 2013. What do infants understand of others’ action? A theoretical account of early social cognition. Psychological Research 78(5): 609–622. doi: 10.1007/s00426-013-0519-3.CrossRefGoogle Scholar
  102. Uithol, S., I. van Rooij, H. Bekkering, and W.F.G. Haselager. 2012. Hierarchies in action and motor control. Journal of Cognitive Neuroscience 24(5): 1077–1086. doi: 10.1162/jocn_a_00204.CrossRefGoogle Scholar
  103. Uithol, S., D. Burnston, and W.F.G. Haselager. 2014. Why we may not find intentions in the brain. Neuropsychologia 56: 129–139. doi: 10.1016/j.neuropsychologia.2014.01.010.CrossRefGoogle Scholar
  104. van Gelder, T. 1998. The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences 21: 615–665.Google Scholar
  105. Varela, F.J., E. Thompson, and E. Rosch. 1991. The embodied mind: Cognitive science and human experience. Cambridge: MIT Press.Google Scholar
  106. Vinding, M.C., M. Jensen, and M. Overgaard. 2014. Distinct electrophysiological potentials for intention in action and prior intention for action. Cortex 50: 86–99. doi: 10.1016/j.cortex.2013.09.001.CrossRefGoogle Scholar
  107. Vogelstein, J.T., Y. Park, T. Ohyama, R.A. Kerr, J.W. Truman, C.E. Priebe, and M. Zlatic. 2014. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 344(6182): 386–392. doi: 10.1126/science.1250298.CrossRefGoogle Scholar
  108. Wegner, D.M. 2003. The illusion of conscious will. Cambridge: The MIT Press.Google Scholar
  109. Wong, K.-F., and X.-J. Wang. 2006. A recurrent network mechanism of time integration in perceptual decisions. Journal of Neuroscience 26(4): 1314–1328. doi: 10.1523/JNEUROSCI. 3733-05.2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Laboratory of Cognitive Neuroscience, Brain-Mind Institute, Department of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Center for NeuroprostheticsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Department of NeuroscienceUniversity of ParmaParmaItaly

Personalised recommendations