Skip to main content
Log in

A sharp Leibniz rule for \({\mathrm {BV}}\) functions in metric spaces

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We prove a Leibniz rule for \({\mathrm {BV}}\) functions in a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality. Unlike in previous versions of the rule, we do not assume the functions to be locally essentially bounded and the end result does not involve a constant \(C\ge 1\), and so our result seems to be essentially the best possible. In order to obtain the rule in such generality, we first study the weak* convergence of the variation measure of \({\mathrm {BV}}\) functions, with quasi semicontinuous test functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L.: Fine properties of sets of finite perimeter in doubling metric measure spaces, calculus of variations, nonsmooth analysis and related topics. Set Valued Anal. 10(2–3), 111–128 (2002)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Ambrosio, L., Miranda, M., Jr., Pallara, D.: Special Functions of Bounded Variation in Doubling Metric Measure Spaces, Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi, 1–45, Quad. Mat., 14, Dept. Math., Seconda Università di Napoli, Caserta (2004)

  4. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich. xii+403 pp (2011)

  5. Björn, A., Björn, J.: Obstacle and Dirichlet problems on arbitrary nonopen sets in metric spaces, and fine topology. Rev. Mat. Iberoam. 31(1), 161–214 (2015)

    Article  MathSciNet  Google Scholar 

  6. Björn, A., Björn, J., Malý, J.: Quasiopen and p-path open sets, and characterizations of quasicontinuity. Potential Anal. 46(1), 181–199 (2017)

    Article  MathSciNet  Google Scholar 

  7. Björn, A., Björn, J., Shanmugalingam, N.: Quasicontinuity of Newton–Sobolev functions and density of Lipschitz functions on metric spaces. Houston J. Math. 34(4), 1197–1211 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Carriero, M., Dal Maso, G., Leaci, A., Pascali, E.: Relaxation of the nonparametric plateau problem with an obstacle. J. Math. Pures Appl. (9) 67(4), 359–396 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics Series. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  10. Federer, H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band vol. 153. Springer, New York Inc., New York, xiv+676 pp (1969)

  11. Fuglede, B.: The quasi topology associated with a countably subadditive set function. Ann. Inst. Fourier 21(1), 123–169 (1971)

    Article  MathSciNet  Google Scholar 

  12. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80. Birkhäuser Verlag, Basel. xii+240 pp (1984)

  13. Hakkarainen, H., Kinnunen, J., Lahti, P., Lehtelä, P.: Relaxation and integral representation for functionals of linear growth on metric measure spaces. Anal. Geom. Metr. Spaces 4, 288–313 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Heinonen, J.: Lectures on Analysis on Metric Spaces, Universitext. Springer, New York, x+140 pp (2001)

  15. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)

    Article  MathSciNet  Google Scholar 

  16. Kinnunen, J., Korte, R., Shanmugalingam, N., Tuominen, H.: A characterization of Newtonian functions with zero boundary values. Calc. Var. Partial Differ. Equ. 43(3–4), 507–528 (2012)

    Article  MathSciNet  Google Scholar 

  17. Kinnunen, J., Korte, R., Shanmugalingam, N., Tuominen, H.: Pointwise properties of functions of bounded variation in metric spaces. Rev. Mat. Complut. 27(1), 41–67 (2014)

    Article  MathSciNet  Google Scholar 

  18. Lahti, P.: A Federer-style characterization of sets of finite perimeter on metric spaces. In: Calculus of Variations and Partial Differential Equations, vol. 56, no. 5, Art. 150, 22 pp (2017)

  19. Lahti, P.: A notion of fine continuity for BV functions on metric spaces. Potential Anal. 46(2), 279–294 (2017)

    Article  MathSciNet  Google Scholar 

  20. Lahti, P.: Federer’s characterization of sets of finite perimeter in metric spaces, to appear in Analysis & PDE

  21. Lahti, P.: Quasiopen sets, bounded variation and lower semicontinuity in metric spaces. In: Potential Analysis (to appear)

  22. Lahti, P.: Strict and pointwise convergence of BV functions in metric spaces. J. Math. Anal. Appl. 455(2), 1005–1021 (2017)

    Article  MathSciNet  Google Scholar 

  23. Lahti, P.: Strong approximation of sets of finite perimeter in metric spaces. Manuscripta Math. 155(3–4), 503–522 (2018)

    Article  MathSciNet  Google Scholar 

  24. Lahti, P.: The Choquet and Kellogg properties for the fine topology when \(p=1\) in metric spaces. J. Math. Pures Appl. 126, 195–213 (2019)

    Article  MathSciNet  Google Scholar 

  25. Lahti, P.: The variational 1-capacity and BV functions with zero boundary values on metric spaces. In: Advances in Calculus of Variations (to appear)

  26. Lahti, P., Shanmugalingam, N.: Fine properties and a notion of quasicontinuity for \(\text{ BV }\) functions on metric spaces. J. Math. Pures Appl. 107(2), 150–182 (2017)

    Article  MathSciNet  Google Scholar 

  27. Lahti, P., Shanmugalingam, N.: Trace theorems for functions of bounded variation in metric spaces. J. Funct. Anal. 274(10), 2754–2791 (2018)

    Article  MathSciNet  Google Scholar 

  28. Miranda Jr., M.: Functions of bounded variation on “good” metric spaces. J. Math. Pures Appl. (9) 82(8), 975–1004 (2003)

    Article  MathSciNet  Google Scholar 

  29. Rudin, W.: Real and Complex Analysis, 3rd edition. McGraw-Hill Book Co., New York, (1987). xiv+416 pp

  30. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16(2), 243–279 (2000)

    Article  MathSciNet  Google Scholar 

  31. Volpert, A.I.: Spaces BV and quasilinear equations. (Russian). Mat. Sb. (N.S.) 73(115), 255–302 (1967)

    MathSciNet  Google Scholar 

  32. Volpert, A. I., Hudjaev, S. I.: Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Mechanics: Analysis, vol. 8. Martinus Nijhoff Publishers, Dordrecht, xviii+678 pp (1985)

  33. Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panu Lahti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahti, P. A sharp Leibniz rule for \({\mathrm {BV}}\) functions in metric spaces. Rev Mat Complut 33, 797–816 (2020). https://doi.org/10.1007/s13163-019-00341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-019-00341-y

Keywords

Mathematics Subject Classification

Navigation