Optimal non-signalling violations via tensor norms

  • Abderramán Amr ReyEmail author
  • Carlos Palazuelos
  • Ignacio Villanueva


In this paper we characterize the set of bipartite non-signalling probability distributions in terms of tensor norms. Using this characterization we give optimal upper and lower bounds on Bell inequality violations when non-signalling distributions are considered. Interestingly, our upper bounds show that non-signalling Bell inequality violations cannot be significantly larger than quantum Bell inequality violations.


Quantum information Bell inequalities Non-signalling distributions Tensor norms 

Mathematics Subject Classification

81P45 46B28 



This research was funded by the Spanish MINECO through Grant No. MTM2017-88385-P, MTM2014-54240-P and by the Comunidad de Madrid through grant QUITEMAD-CM P2018/TCS4342. We also acknowledge funding from SEV-2015-0554-16-3 and “Ramón y Cajal program” RYC-2012-10449 (C. P.).


  1. 1.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)CrossRefGoogle Scholar
  2. 2.
    Bavarian, M., Shor, P.W.: Information causality, Szemerédi-Trotter and algebraic variants of CHSH. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, pp. 123–132 (2015)Google Scholar
  3. 3.
    Bell, J.S.: On the Einstein–Poldolsky–Rosen paradox. Physics 1, 195 (1964)CrossRefGoogle Scholar
  4. 4.
    Bergh, J., Löfström, J.: Interpolation spaces: an introduction. Grundlehren der mathematischen Wissenschaften, vol. 223. Springer-Verlag, Berlin (1976)CrossRefGoogle Scholar
  5. 5.
    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)CrossRefGoogle Scholar
  6. 6.
    Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit Bell inequality violations. Theory Comput. 8, 623–645 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland, Amsterdam (1993)zbMATHGoogle Scholar
  8. 8.
    Degorre, J., Kaplan, M., Laplante, S., Roland, J.: The communication complexity of non-signalling distributions. In: International Symposium on Mathematical Foundations of Computer Science, pp. 270–281 (2009)CrossRefGoogle Scholar
  9. 9.
    Feige, U., Lovasz, L.: Two-prover one-round proof systems: their power and their problem. In: Proceedings of the 24th ACM Symposium on Theory of Computing, pp. 733–741 (1992)Google Scholar
  10. 10.
    Goemans, M.: Chernoff bounds, and some applications 18.310 lecture notes. (2015)
  11. 11.
    Ito, T.: Polynomial-space approximation of no-signaling provers. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 6198, pp. 140–151. Springer, Berlin (2010)CrossRefGoogle Scholar
  12. 12.
    Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Commun. Math. Phys. 306, 695–746 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Junge, M., Palazuelos, C., Pérez-García, D., Villanueva, I., Wolf, M.M.: Unbounded violations of bipartite Bell inequalities via operator space theory. Commun. Math. Phys. 300, 715–739 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Junge, M., Palazuelos, C., Pérez-García, D., Villanueva, I., Wolf, M.M.: Operator space theory: a natural framework for Bell inequalities. Phys. Rev. Lett. 104, 170405 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lami, L., Palazuelos, C., Winter, A.: Ultimate data hiding in quantum mechanics and beyond. Commun. Math. Phys. 361(2), 661–708 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lancien, C., Winter, A.: Parallel repetition and concentration for (sub-)no-signalling games via a flexible constrained de Finetti reduction. Chicago J. Theor. Comput. Sci. 2016, 4 (2016) Google Scholar
  17. 17.
    Palazuelos, C., Vidick, T.: Survey on nonlocal games and operator space theory. J. Math. Phys. 57, 015220 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tomczak-Jaegermann, N.: Banach–Mazur Distances and Finite Dimensional Operator Ideals. Longman Scientific & Technical, Harlow (1989)zbMATHGoogle Scholar
  19. 19.
    Tsirelson, B.S.: Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Sov. Math. 36(4), 557–570 (1987)CrossRefGoogle Scholar
  20. 20.
    Tsirelson, B.S.: Some results and problems on quantum Bell-type inequalities. Hadron. J. Suppl. 8(4), 329–345 (1993)MathSciNetzbMATHGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  1. 1.Departamento de Análisis Matemático y Matemática AplicadaUniversidad Complutense de MadridMadridSpain
  2. 2.Instituto de Ciencias Matemáticas (ICMAT)MadridSpain
  3. 3.Instituto Matemáticas Interdisciplinar (IMI)Universidad Complutense de MadridMadridSpain

Personalised recommendations