Advertisement

Closed \({\text {G}}_{2}\)-structures on non-solvable Lie groups

  • Anna Fino
  • Alberto RafferoEmail author
Article
  • 11 Downloads

Abstract

We investigate the existence of left-invariant closed G\(_2\)-structures on seven-dimensional non-solvable Lie groups, providing the first examples of this type. When the Lie algebra has trivial Levi decomposition, we show that such a structure exists only when the semisimple part is isomorphic to \(\mathfrak {sl}(2,{\mathbb R})\) and the radical is unimodular and centerless. Moreover, we classify unimodular Lie algebras with non-trivial Levi decomposition admitting closed G\(_2\)-structures.

Keywords

Closed \(\mathrm{G}_2\)-structure Non-solvable Lie group Levi decomposition 

Mathematics Subject Classification

53C10 53C30 

Notes

Acknowledgements

The authors would like to thank Fabio Podestà for useful conversations, and the two anonymous referees for their valuable comments. This work was done when A. R. was a postdoctoral fellow at the Department of Mathematics and Computer Science “U. Dini” of the Università degli Studi di Firenze.

References

  1. 1.
    Andrada, A., Barberis, M.L., Dotti, I.G., Ovando, G.P.: Product structures on four dimensional solvable Lie algebras. Homol. Homotopy Appl. 7(1), 9–37 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bock, C.: On low-dimensional solvmanifolds. Asian J. Math. 20(2), 199–262 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bryant, R.L.: Some remarks on G\(_2\)-structures. In: Proceedings of Gökova Geometry–Topology Conference 2005 (GGT), Gökova, pp. 75–109 (2006)Google Scholar
  4. 4.
    Chu, B.Y.: Symplectic homogeneous spaces. Trans. Am. Math. Soc. 197, 145–159 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cleyton, R., Swann, A.: Cohomogeneity-one G\(_2\)-structures. J. Geom. Phys. 44(2–3), 202–220 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Conti, D., Fernández, M.: Nilmanifolds with a calibrated G\(_2\)-structure. Differ. Geom. Appl. 29(4), 493–506 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cortés, V., Leistner, T., Schäfer, L., Schulte-Hengesbach, F.: Half-flat structures and special holonomy. Proc. Lond. Math. Soc. (2) 102(1), 113–158 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Crowley, D., Nordström, J.: New invariants of G\(_2\)-structures. Geom. Topol. 19(5), 2949–2992 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fernández, M.: An example of a compact calibrated manifold associated with the exceptional Lie group G\(_2\). J. Differ. Geom. 26(2), 367–370 (1987)CrossRefzbMATHGoogle Scholar
  10. 10.
    Fernández, M.: A family of compact solvable \(G_2\)-calibrated manifolds. Tohoku Math. J. (2) 39(2), 287–289 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fernández, M., Fino, A., Manero, V.: Laplacian flow of closed G\(_2\)-structures inducing nilsolitons. J. Geom. Anal. 26(3), 1808–1837 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fernández, M., Gray, A.: Riemannian manifolds with structure group G\(_{2}\). Ann. Mat. Pura Appl. 4(132), 19–45 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fino, A., Raffero, A.: Closed warped G\(_2\)-structures evolving under the Laplacian flow. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (to appear).  https://doi.org/10.2422/2036-2145.201709_004
  14. 14.
    Freibert, M.: Calibrated and parallel structures on almost Abelian Lie algebras. arXiv:1307.2542
  15. 15.
    Gray, A.: Vector cross products on manifolds. Trans. Am. Math. Soc. 141, 465–504 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hasegawa, K.: Four-dimensional compact solvmanifolds with and without complex analytic structures. arXiv:math/0401413
  17. 17.
    Hitchin, N.: Stable forms and special metrics. In: Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Bilbao, 2000), Contemporary Mathematics, vol. 288, pp. 70–89. American Mathematical Society, Providence (2001)Google Scholar
  18. 18.
    Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser, Boston (2002)zbMATHGoogle Scholar
  19. 19.
    Lauret, J.: Laplacian flow of homogeneous G\(_2\)-structures and its solitons. Proc. Lond. Math. Soc. (3) 114(3), 527–560 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lauret, J.: Laplacian solitons: questions and homogeneous examples. Differ. Geom. Appl. 54(B), 345–360 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lichnerowicz, A., Medina, A.: On Lie groups with left-invariant symplectic or Kählerian structures. Lett. Math. Phys. 16(3), 225–235 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lotay, J.D., Wei, Y.: Laplacian flow for closed G\(_2\) structures: Shi-type estimates, uniqueness and compactness. Geom. Funct. Anal. 27(1), 165–233 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21(3), 293–329 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mostow, G.D.: Discrete subgroups of Lie groups. Adv. Math. 16, 112–123 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mubarakzjanov, G.M.: On solvable Lie algebras. Izv. Vysš. Učehn. Zaved. Mat. 32(1), 114–123 (1963)MathSciNetGoogle Scholar
  26. 26.
    Podestà, F., Raffero, A.: On the automorphism group of a closed G\(_2\)-structure. Q. J. Math. (to appear).  https://doi.org/10.1093/qmath/hay045
  27. 27.
    Turkowski, P.: Low-dimensional real Lie algebras. J. Math. Phys. 29(10), 2139–2144 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica “G. Peano”Università degli Studi di TorinoTurinItaly

Personalised recommendations