Advertisement

Rearrangement estimates for \(A_\infty \) weights

  • Irina Asekritova
  • Maria J. Carro
  • Natan Kruglyak
  • Javier SoriaEmail author
Article
  • 15 Downloads

Abstract

We find a new characterizations of an \(A_{\infty }\) weight \(\omega \), in terms of the decreasing rearrangement of the restriction of \(\omega \) to cubes Q.

Keywords

Muckenhoupt weights Reverse Hölder inequality Decreasing rearrangement 

Mathematics Subject Classification

42B25 46E30 

Notes

Acknowledgements

We would like to thank the referees for their valuable comments which have really improved the final version of this manuscript. In particular, the Proof of Lemma 2.1 has been simplified, even obtaining a better estimate on the exponents involved.

References

  1. 1.
    Agora, E., Carro, M.J., Soria, J.: Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces. J. Fourier Anal. Appl. 19(4), 712–730 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)zbMATHGoogle Scholar
  3. 3.
    Bojarski, B., Sbordone, C., Wik, I.: The Muckenhoupt class \(A_1({\mathbb{R}})\). Studia Math. 101(2), 155–163 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Duoandikoetxea, J., Martín-Reyes, F.J., Ombrosi, S.: On the \(A_\infty \) conditions for general bases. Math. Z. 282, 955–972 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fujii, N.: Weighted bounded mean oscillation and singular integrals. Math. Japon 22, 529–534 (1977/1978)Google Scholar
  7. 7.
    García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics, Mathematical Studies, vol. 116. North-Holland, Amsterdam (1985)zbMATHGoogle Scholar
  8. 8.
    Hytönen, T., Pérez, C.: Sharp weighted bounds involving \(A_{\infty }\). Anal. PDE 6, 777–818 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hytönen, T., Pérez, C., Rela, E.: Sharp reverse Hölder property for \(A_\infty \) weights on spaces of homogeneous type. J. Funct. Anal. 263(12), 3883–3899 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Johnson, R., Neugebauer, C.J.: Homeomorphisms preserving \(A_p\). Rev. Mat. Iberoam. 3(2), 249–273 (1987)CrossRefzbMATHGoogle Scholar
  11. 11.
    Johnson, R., Neugebauer, C.J.: Change of variable results for \(A_p\)- and reverse Hölder \({\rm RH}_r\)-classes. Trans. Am. Math. Soc. 328(2), 639–666 (1991)Google Scholar
  12. 12.
    Leonchik, E.Yu.: On an estimate for the rearrangement of a function from the Muckenhoupt class \(A_1\), Ukraïn. Mat. Zh. 62 (2010), no. 8, 1145–1148 (Russian, with English summary); English transl., Ukrainian Math. J. 62, no. 8, 1333–1338 (2011)Google Scholar
  13. 13.
    Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Neugebauer, C.J.: The precise range of indices for the \(\text{RH}_r\)- and \(\text{ A }_p\)- weight classes. Preprint available at https://arxiv.org/pdf/math/9809162.pdf
  15. 15.
    Nikolidakis, E.N.: Dyadic \(A_1\) weights and equimeasurable rearrangements of functions. J. Geom. Anal. 26(2), 782–790 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nikolidakis, E.N., Melas, A.D.: Dyadic weights on \({{\mathbb{R}}^{n}}\) and reverse Hölder inequalities. Studia Math. 234(3), 281–290 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Wik, I.: On Muckenhoupt’s classes of weight functions. Studia Math. 94(3), 245–255 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wilson, J.M.: Weighted inequalities for the dyadic square function without dyadic \(A_\infty \). Duke Math. J. 55, 19–49 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  1. 1.Department of MathematicsLinköping UniversityLinköpingSweden
  2. 2.Department of Mathematics and Computer ScienceUniversity of BarcelonaBarcelonaSpain

Personalised recommendations