Revista Matemática Complutense

, Volume 32, Issue 1, pp 57–98 | Cite as

BMO functions and balayage of Carleson measures in the Bessel setting

  • Víctor Almeida
  • Jorge J. Betancor
  • Alejandro J. Castro
  • Juan C. Fariña
  • Lourdes Rodríguez-MesaEmail author


By \(BMO_{\text {o}}(\mathbb {R})\) we denote the space consisting of all those odd and bounded mean oscillation functions on \(\mathbb {R}\). In this paper we characterize the functions in \(BMO_{\text {o}}(\mathbb {R})\) with bounded support as those ones that can be written as a sum of a bounded function on \((0,\infty )\) plus the balayage of a Carleson measure on \((0,\infty )\times (0,\infty )\) with respect to the Poisson semigroup associated with the Bessel operator
$$\begin{aligned} B_\lambda :=-x^{-\lambda }\frac{d}{dx}x^{2\lambda }\frac{d}{dx}x^{-\lambda },\quad \lambda >0. \end{aligned}$$
This result can be seen as an extension to Bessel setting of a classical result due to Carleson.


Bessel operators BMO functions Carleson measure Balayage 

Mathematics Subject Classification

30H35 35J15 42B35 42B37 42C05 


  1. 1.
    Betancor, J.J., Castro, A.J., Fariña, J.C., Rodríguez-Mesa, L.: Solutions of Weinstein equations representable by Bessel Poisson integrals of BMO functions. J. Math. Anal. Appl. 431, 440–470 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Betancor, J.J., Castro, A.J., Stinga, P.R.: The fractional Bessel equation in Hölder spaces. J. Approx. Theory 184, 55–99 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Betancor, J.J., Chicco Ruiz, A., Fariña, J.C., Rodríguez-Mesa, L.: Odd \({\rm BMO}(\mathbb{R})\) functions and Carleson measures in the Bessel setting. Integr. Equ. Oper. Theory 66, 463–494 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Betancor, J.J., Duong, X.T., Li, J., Wick, B.W., Yang, D.: Product Hardy, BMO spaces and iterated commutators associated with Bessel Schrödinger operators. Indiana Univ. Math. J. arXiv:1701.05161
  5. 5.
    Betancor, J.J., Dziubański, J., Torrea, J.L.: On Hardy spaces associated with Bessel operators. J. Anal. Math. 107, 195–219 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Betancor, J.J., Stempak, K.: On Hankel conjugate functions. Stud. Sci. Math. Hung. 41, 59–91 (2004)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Carleson, L.: Two remarks on \(H^{1}\) and BMO. Adv. Math. 22, 269–277 (1976)CrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, P., Duong, X.T., Li, J., Song, L., Yan, L.: Carleson measures, BMO spaces and balayages associated to Schrödinger operators. Sci. China Math. 60, 2077–2092 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Duong, X.T., Li, J., Ou, Y., Wick, B.W., Yang, D.: Product BMO, little BMO, and Riesz commutators in the Bessel setting. J. Geom. Anal. (2017). Google Scholar
  10. 10.
    Duong, X.T., Li, J., Wick, B.D., Yang, D.: Factorization for Hardy spaces and characterization for BMO spaces via commutators in the Bessel setting. Indiana Univ. Math. J. 66, 1081–1106 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Duong, X.T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Duong, X.T., Yan, L.: New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications. Commun. Pure Appl. Math. 58, 1375–1420 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Duong, X.T., Yan, L., Zhang, C.: On characterization of Poisson integrals of Schrödinger operators with BMO traces. J. Funct. Anal. 266, 2053–2085 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dziubański, J., Garrigós, G., Martínez, T., Torrea, J.L., Zienkiewicz, J.: \(BMO\) spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z. 249, 329–356 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fridli, S.: Hardy spaces generated by an integrability condition. J. Approx. Theory 113, 91–109 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Garnett, J.B.: Bounded Analytic Functions. Pure and Applied Mathematics, vol. 96. Academic Press Inc, New York (1981)Google Scholar
  17. 17.
    Garnett, J.B., Jones, P.W.: BMO from dyadic BMO. Pac. J. Math. 99, 351–371 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415–426 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lebedev, N.N.: Special Functions and their Applications (revised edition, translated from the Russian and edited by Richard A. Unabridged and corrected republication, Silverman). Dover Publications Inc, New York (1972)Google Scholar
  20. 20.
    Li, J., Wick, B.W.: The two-weight inequality for the Poisson operator in the Bessel setting. Preprint 2017 arXiv:1707.07492
  21. 21.
    Muckenhoupt, B., Stein, E.M.: Classical expansions and their relation to conjugate harmonic functions. Trans. Am. Math. Soc. 118, 17–92 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nowak, A., Stempak, K.: Weighted estimates for the Hankel transform transplantation operator. Tohoku Math. J. (2) 58, 277–301 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nowak, A., Stempak, K.: Potential operators associated with Hankel and Hankel–Dunkl transforms. J. Anal. Math. 131, 277–321 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shen, Z.W.: \(L^p\) estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45, 513–546 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton, NJ (1993)Google Scholar
  26. 26.
    Titchmarsh, E.C.: Hankel transforms. Proc. Camb. Philos. Soc. 21, 463–473 (1923)zbMATHGoogle Scholar
  27. 27.
    Uchiyama, A.: A remark on Carleson’s characterization of BMO. Proc. Am. Math. Soc. 79, 35–41 (1980)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Villani, M.: Riesz transforms associated to Bessel operators. Ill. J. Math. 52, 77–89 (2008)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Wilson, J.M.: Green’s theorem and balayage. Mich. Math. J. 35, 21–27 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yang, D., Yang, D.: Real-variable characterizations of Hardy spaces associated with Bessel operators. Anal. Appl. 9, 345–368 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2018

Authors and Affiliations

  1. 1.Departamento de Análisis MatemáticoUniversidad de La LagunaLa LagunaSpain
  2. 2.Department of MathematicsNazarbayev UniversityAstanaKazakhstan

Personalised recommendations