Lifting the hyperelliptic involution of a Klein surface

  • Emilio Bujalance
  • Francisco-Javier Cirre
  • Peter Turbek
Article
  • 8 Downloads

Abstract

We consider unbranched normal coverings \(X\rightarrow X'\) between compact Klein surfaces of algebraic genus bigger than one where \(X'\) is hyperelliptic. Here unbranched means that the fixed point set of the group G of covering transformations is either empty or projects onto the boundary of \(X'\). We find a criterion which determines whether the hyperelliptic involution of \(X'\) lifts to an automorphism of X. The study splits naturally into six cases according to the different topological types that \(X'\) may possess. Our results apply nicely to the case when G is abelian, showing for instance that if G has odd order then the hyperelliptic involution always lifts. We also apply the criterion to particular presentations of other types of groups.

Keywords

Klein surface Normal covering Automorphism group Lifting automorphisms 

Mathematics Subject Classification

30F50 20H10 

Notes

Acknowledgements

The authors wish to thank the referees for their suggestions and comments which have contributed to get a more readable paper.

References

  1. 1.
    Accola, R.D.M.: On lifting the hyperelliptic involution. Proc. Am. Math. Soc. 122, 341–347 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alling, N.L., Greenleaf, N.: Foundations of the Theory of Klein Surfaces, Lecture Notes in Mathematics, vol. 219. Springer, Berlin (1971)CrossRefMATHGoogle Scholar
  3. 3.
    Bujalance, E.: A classification of unbranched double coverings of hyperelliptic Riemann surfaces. Arch. Math. 47(1), 93–96 (1986)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bujalance, E., Bujalance, J.A., Gromadzki, G., Martinez, E.: The groups of automorphisms of nonorientable hyperelliptic Klein surfaces without boundary. In: Proceeding of “Groups-Korea (Pusan, 1988),” Lecture Notes in Mathematics, vol. 1398, pp. 43–51. Springer, Berlin (1989)Google Scholar
  5. 5.
    Bujalance, E., Etayo, J.J., Gamboa, J.M.: Hyperelliptic Klein surfaces. Q. J. Math. Oxf. 36(2), 141–157 (1985)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bujalance, E., Etayo, J.J., Gamboa, J.M., Gromadzki, G.: Automorphism Groups of Compact Bordered Klein Surfaces, Lecture Notes in Mathematics, vol. 1439. Springer, Berlin (1990)CrossRefMATHGoogle Scholar
  7. 7.
    Costa, A.F., Turbek, P.: Lifting involutions to ramified covers of Riemann surfaces. Arch. Math. 81(2), 161–168 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Farkas, H.M.: Unramified double coverings of hyperelliptic surfaces. J. Anal. Math. 20, 150–155 (1976)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Farkas, H.M.: Unramified coverings of hyperelliptic Riemann surfaces. Complex Analysis, I (College Park, Md., 1985–1986), Lecture Notes in Mathematics, vol. 1275, pp. 113–130. Springer, Berlin (1987)Google Scholar
  10. 10.
    Farkas, H.M.: Unramified double coverings of hyperelliptic surfaces II. Proc. Am. Math. Soc. 101(3), 470–474 (1987)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fuertes, Y., González-Diez, G.: On unramified normal coverings of hyperelliptic curves. J. Pure Appl. Algebra 208(3), 1063–1070 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Howie, J., Thomas, R.M.: Proving certain groups infinite. In: Geometric Group Theory, vol. 1 (Sussex, 1991), London Mathematical Society Lecture Note Series, vol. 181, pp. 126–131. Cambridge University Press, Cambridge (1993)Google Scholar
  13. 13.
    Macbeath, A.M.: Groups of homeomorphisms of a simply connected space. Ann. Math. (2) 79, 473–488 (1964)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Maclachlan, C.: Smooth coverings of hyperelliptic surfaces. Q. J. Math. Oxf. (2) 22, 117–123 (1971)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Natanzon, S.M.: Klein surfaces, (Russian) Uspekhi Mat. Nauk 45 (1990), no. 6(276), 47–90, 189; translation in Russian Math. Surveys 45 (1990), no. 6, 53–108Google Scholar
  16. 16.
    Sunday, J.G.: Presentations of the groups SL\((2, m)\) and PSL\((2, m)\). Canad. J. Math. 24(6), 1129–1131 (1972)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Turbek, P.: A necessary and sufficient condition for lifting the hyperelliptic involution. Proc. Am. Math. Soc. 125(9), 2615–2625 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wilkie, H.C.: On non-euclidean crystallographic groups. Math. Z. 91, 87–102 (1966)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2018

Authors and Affiliations

  1. 1.Departamento de Matemáticas Fundamentales, Facultad de CienciasUniversidad Nacional de Educación a DistanciaMadridSpain
  2. 2.Department of Mathematics, Statistics and Computer SciencePurdue University NorthwestHammondUSA

Personalised recommendations