Splicing motivic zeta functions
- 133 Downloads
- 3 Citations
Abstract
The first part of the paper discusses how to lift the splicing formula of Némethi and Veys to the motivic level. After defining the motivic zeta function and the monodromic motivic zeta function with respect to a differential form, we prove a splicing formula for them, which specializes to this formula of Némethi and Veys. We also show that we cannot introduce a monodromic motivic zeta functions in terms of a (splice) diagram since it does not contain all the necessary information. In the last part we discuss the generalized monodromy conjecture of Némethi and Veys. The statement also holds for motivic zeta functions but it turns out that the analogous statement for monodromic motivic zeta functions is not correct. We illustrate this with some examples.
Keywords
Splicing Motivic zeta functions Monodromy conjectureMathematics Subject Classification
Primary 14E18 Secondary 14H50 32S05Notes
Acknowledgments
I am very grateful to Wim Veys and Johannes Nicaise for their valuable suggestions. I am also very grateful for the suggestions made by the referees.
References
- 1.Abramovich, D., Karu, K., Matsuki, K., Włodarczyk, J.: Torification and factorization of birational maps. J. Am. Math. Soc. 15(3), 531–572 (2002). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Artal Bartolo, E., Cassou-Noguès, P., Luengo, I., Melle Hernández, A.: Monodromy conjecture for some surface singularities. Ann. Sci. École Norm. Sup. (4) 35(4), 605–640 (2002)MathSciNetzbMATHGoogle Scholar
- 3.Artal Bartolo, E., Cassou-Noguès, P., Luengo, I., Melle Hernández, A.: Quasi-ordinary power series and their zeta functions. Mem. Am. Math. Soc 178(841), vi+85 (2005)MathSciNetzbMATHGoogle Scholar
- 4.Bittner, F.: The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140(4), 1011–1032 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Bories, B.: Zeta functions, Bernstein–Sato polynomials, and the monodromy conjecture. Ph.D. thesis, KU Leuven, Leuven (2013)Google Scholar
- 6.Cox, D.A., Little, J.B., Schenck, H.K.: Toric varieties. In: Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)Google Scholar
- 7.de Jong, J., Noot, R.: Jacobians with complex multiplication. In: Arithmetic Algebraic Geometry (Texel, 1989). Progr. Math., vol. 89, pp. 177–192. Birkhäuser, Boston (1991)Google Scholar
- 8.Denef, J., Loeser, F., d’Euler-Poincaré, C.: fonctions zêta locales et modifications analytiques. J. Am. Math. Soc. 5(4), 705–720 (1992)Google Scholar
- 9.Denef, J., Loeser, F.: Motivic Igusa zeta functions. J. Algebraic Geom. 7(3), 505–537 (1998)MathSciNetzbMATHGoogle Scholar
- 10.Denef, J., Loeser, F.: Geometry on arc spaces of algebraic varieties. In: European Congress of Mathematics, Vol. I (Barcelona, 2000). Progr. Math., vol. 201, pp. 327–348. Birkhäuser, Basel (2001)Google Scholar
- 11.Denef, J., Loeser, F.: Lefschetz numbers of iterates of the monodromy and truncated arcs. Topology 41(5), 1031–1040 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Dimca, A.: Sheaves in topology. In: Universitext. Springer, Berlin (2004)Google Scholar
- 13.Eisenbud, D., Neumann, W.: Three-dimensional link theory and invariants of plane curve singularities. In: Annals of Mathematics Studies, vol. 110. Princeton University Press, Princeton (1985)Google Scholar
- 14.Ekedahl, T.: The Grothendieck group of algebraic stacks. 21 (2009). arXiv:0903.3143
- 15.Fantechi, B., Göttsche, L., Illusie, L., Kleiman, S.L., Nitsure, N., Vistoli, A.: Fundamental algebraic geometry: Grothendieck’s FGA explained, vol. 123. American Mathematical Society (AMS), Providence (2005). (English)Google Scholar
- 16.Griffiths, P., Harris, J.: Principles of algebraic geometry. In: Wiley Classics Library. Wiley, New York (1994). (Reprint of the 1978 original)Google Scholar
- 17.Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)CrossRefGoogle Scholar
- 18.Loeser, F.: Fonctions d’Igusa \(p\)-adiques et polynômes de Bernstein. Am. J. Math. 110(1), 1–21 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Loeser, F.: Seattle lectures on motivic integration. In: Algebraic Geometry–Seattle 2005. Part 2, Proc. Sympos. Pure Math., vol. 80, pp. 745–784. Am. Math. Soc., Providence (2009)Google Scholar
- 20.Loeser, F.: Microlocal geometry and valued fields. Publ. Res. Inst. Math. Sci. 47(2), 613–627 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Mumford, D.: Abelian varieties. In: Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi (2008). [With appendices by C. P. Ramanujam and Yuri Manin, corrected reprint of the second (1974) edition]Google Scholar
- 22.Némethi, A., Veys, W.: Generalized monodromy conjecture in dimension two. Geom. Topol. 16(1), 155–217 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Nicaise, J.: An introduction to \(p\)-adic and motivic zeta functions and the monodromy conjecture. In: Algebraic and Analytic Aspects of Zeta Functions and \(L\)-Functions, MSJ Mem., vol. 21, pp. 141–166. Math. Soc. Japan (2010)Google Scholar
- 24.Rodrigues, B., Veys, W.: Poles of zeta functions on normal surfaces. Proc. Lond. Math. Soc. (3) 87(1), 164–196 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Schrauwen, R.: Series of singularities and their topology. Ph.D. thesis, Rijksuniversiteit Utrecht, Utrecht (1990)Google Scholar
- 26.Schrauwen, R., Steenbrink, J., Stevens, J.: Spectral pairs and the topology of curve singularities. In: Complex Geometry and Lie Theory (Sundance, UT, 1989). Proc. Sympos. Pure Math., vol. 53, pp. 305–328. Am. Math. Soc., Providence (1991)Google Scholar
- 27.Veys, W.: Zeta functions for curves and log canonical models. Proc. Lond. Math. Soc. (3) 74(2), 360–378 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Veys, W.: Zeta functions and “Kontsevich invariants” on singular varieties. Can. J. Math. 53(4), 834–865 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Veys, W.: Monodromy eigenvalues and zeta functions with differential forms. Adv. Math. 213(1), 341–357 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 30.Voisin, C.: Hodge theory and complex algebraic geometry. I, English ed. In: Cambridge Studies in Advanced Mathematics, vol. 76. Cambridge University Press, Cambridge (2007). (Translated from the French by Leila Schneps)Google Scholar
- 31.Weil, A.: On Picard varieties. Am. J. Math. 74, 865–894 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
- 32.Włodarczyk, J.: Toroidal varieties and the weak factorization theorem. Invent. Math. 154(2), 223–331 (2003)MathSciNetCrossRefzbMATHGoogle Scholar