Revista Matemática Complutense

, Volume 27, Issue 1, pp 167–212

Widths of weighted Sobolev classes on a John domain: strong singularity at a point

Article

Abstract

The paper is concerned with orders of Kolmogorov and linear widths of weighted Sobolev classes on a domain with John condition in a weighted Lebesgue space. It is assumed that at zero the weights have singularity, which may have effect on the orders of weights.

Keywords

Weighted Sobolev classes John domain Widths 

Mathematics Subject Classification (2000)

41A46 (Approximation by arbitrary nonlinear expressions; widths and entropy) 

References

  1. 1.
    Adams, D.R.: Traces of potentials. II. Indiana Univ. Math. J. 22, 907–918 (1972/73)Google Scholar
  2. 2.
    Adams, D.R.: A trace inequality for generalized potentials. Studia Math. 48, 99–105 (1973)MATHMathSciNetGoogle Scholar
  3. 3.
    Aitenova, M.S., Kusainova, L.K.: On the asymptotics of the distribution of approximation numbers of embeddings of weighted Sobolev classes. I. Mat. Zh., 2(1), 3–9 (2002)Google Scholar
  4. 4.
    Aitenova, M.S., Kusainova, L.K.: On the asymptotics of the distribution of approximation numbers of embeddings of weighted Sobolev classes. II. Mat. Zh., 2(2), 7–14 (2002)Google Scholar
  5. 5.
    Andersen, K.F., Heinig, H.P.: Weighted norm inequalities for certain integral operators. SIAM J. Math. Anal 14, 834–844 (1983)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Antoci, F.: Some necessary and some sufficient conditions for the compactness of the embedding of weighted Sobolev spaces. Ricerche Math. 52(1), 55–71 (2003)MATHMathSciNetGoogle Scholar
  7. 7.
    Besov, O.V.: On the compactness of embeddings of weighted Sobolev spaces on a domain with an irregular boundary. Tr. Mat. Inst. Steklova 232, 72–93 (2001) [Proc. Steklov Inst. Math., 1(232), 66–87 (2001)]Google Scholar
  8. 8.
    Besov, O.V.: Sobolev’s embedding theorem for a domain with an irregular boundary. Mat. Sb. 192(3), 3–26 (2001) [Sb. Math. 192, 3–4, 323–346 (2001)]Google Scholar
  9. 9.
    Besov, O.V.: On the compactness of embeddings of weighted Sobolev spaces on a domain with an irregular boundary. Dokl. Akad. Nauk 376(6), 727–732 (2001) [Doklady Math. 63,1, 95–100 (2001)]Google Scholar
  10. 10.
    Besov, O.V.: Integral estimates for differentiable functions on irregular domains. Mat. Sb. 201(12), 69–82 (2010) [Sb. Math. 201(12), 1777–1790 (2010)]Google Scholar
  11. 11.
    Besov, O.V.: On Kolmogorov widths of Sobolev classes on an irregular domain. Proc. Steklov Inst. Math. 280, 34–45 (2013)CrossRefGoogle Scholar
  12. 12.
    Besov, O.V., Il’in, V.P., Nikol’skii, S.M.: Integral representations of functions, and imbedding theorems. Nauka, Moscow (1996). [Winston, Washington DC; Wiley, New York, 1979]MATHGoogle Scholar
  13. 13.
    Birman, M.Sh., Solomyak, M.Z.: Piecewise polynomial approximations of functions of classes \(W^\alpha _p\). Mat. Sb 73(3), 331–355 (1967)Google Scholar
  14. 14.
    Edmunds, D.E., Evans, W.D.: Hardy Operators. Function Spaces and Embeddings. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  15. 15.
    Edmunds, D.E., Lang, J.: Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case. Math. Nachr. 297(7), 727–742 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Edmunds, D.E., Lang, J.: Gelfand numbers and widths. Approx. Theory 166, 78–84 (2013)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Edmunds, D.E., Triebel, H.: Function spaces, entropy numbers, differential operators. Cambridge Tracts in Mathematics, vol. 120. Cambridge University Press, Cambridge (1996)Google Scholar
  18. 18.
    El Kolli, A.: \(n\)-ième épaisseur dans les espaces de Sobolev. J. Approx. Theory 10, 268–294 (1974)CrossRefMATHGoogle Scholar
  19. 19.
    Evans, W.D., Harris, D.J.: Fractals, trees and the Neumann Laplacian. Math. Ann. 296(3), 493–527 (1993)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Evans, W.D., Harris, D.J., Lang, J.: Two-sided estimates for the approximation numbers of Hardy-type operators in \(L_\infty \) and \(L_1\). Studia Math. 130(2), 171–192 (1998)MATHMathSciNetGoogle Scholar
  21. 21.
    Evans, W.D., Harris, D.J., Lang, J.: The approximation numbers of Hardy-type operators on trees. Proc. Lond. Math. Soc. (3) 83(2), 390–418 (2001)Google Scholar
  22. 22.
    Evans, W.D., Harris, D.J., Pick, L.: Weighted Hardy and Poincaré inequalities on trees. J. Lond. Math. Soc. (2) 52(1), 121–136 (1995)Google Scholar
  23. 23.
    Galeev, E.M.: Approximation of certain classes of periodic functions of several variables by Fourier sums in the \(\widetilde{L}_p\) metric. Uspekhi Mat. Nauk 32(4), 251–252 (1977) [ Russ. Math. Surv.; in Russian]Google Scholar
  24. 24.
    Galeev, E.M.: The Approximation of classes of functions with several bounded derivatives by Fourier sums. Math. Notes 23(2), 109–117 (1978)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Garnaev, Yu.A., Gluskin, E.D.: The widths of a Euclidean ball. Soviet Math. Dokl. 30(1), 200–204 (1984)Google Scholar
  26. 26.
    Gluskin, E.D.: Norms of random matrices and diameters of finite-dimensional sets. Math. USSR-Sb. 48(1), 173–182 (1984)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Gol’dshtein, V., Ukhlov, A.: Weighted Sobolev spaces and embedding theorems. Trans. AMS 361(7), 3829–3850 (2009)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Gurka, P., Opic, B.: Continuous and compact imbeddings of weighted Sobolev spaces. I, II, III. Czech. Math. J. 38(113,4), 730–744 (1988)Google Scholar
  29. 29.
    Gurka, P., Opic, B.: Continuous and compact imbeddings of weighted Sobolev spaces. II. Czech. Math. J. 39(114,1), 78–94 (1989)Google Scholar
  30. 30.
    Gurka, P., Opic, B.: Continuous and compact imbeddings of weighted Sobolev spaces. III. Czech. Math. J. 41(116,2), 317–341 (1991)Google Scholar
  31. 31.
    Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of function spaces with Muckenhoupt weights. I. Rev. Mat. Complut. 21(1), 135–177 (2008)MATHMathSciNetGoogle Scholar
  32. 32.
    Haroske, D.D., Skrzypczak, L.: Entropy numbers of function spaces with Muckenhoupt weights. III. J. Funct. Spaces Appl. 9(2), 129–178 (2011)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Heinig, H.P.: Weighted norm inequalities for certain integral operators. II. Proc. AMS 95, 387–395 (1985)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Heinrich, S.: On the relation between linear \(n\)-widths and approximation numbers. J. Approx. Theory 58(3), 315–333 (1989)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Ismagilov, R.S.: Diameters of sets in normed linear spaces, and the approximation of functions by trigonometric polynomials. Russ. Math. Surv. 29(3), 169–186 (1974)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Jain, P., Bansal, B., Jain, P.K.: Certain imbeddings of weighted Sobolev spaces. Math. Ineq. Appl. 6(1), 105–120 (2003)MATHMathSciNetGoogle Scholar
  37. 37.
    Kashin, B.S.: The widths of certain finite-dimensional sets and classes of smooth functions. Math. USSR-Izv. 11(2), 317–333 (1977)CrossRefMATHGoogle Scholar
  38. 38.
    Kashin, B.S.: Widths of Sobolev classes of small-order smoothness. Moscow Univ. Math. Bull. 36(5), 62–66 (1981)MATHGoogle Scholar
  39. 39.
    Kudryavtsev, L.D.: Direct and inverse imbedding theorems. Applications to the solution of elliptic equations by variational methods. Tr. Mat. Inst. Steklova, 55, 3–182 (1959) [Russian]Google Scholar
  40. 40.
    Kudryavtsev, L.D., Nikol’skii, S.M.: Spaces of differentiable functions of several variables and embedding theorems. Current problems in mathematics. Fundam. Direct. 26, 5–157 (1988) (Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988. [Analysis III, Spaces of differentiable functions, Encycl. Math. Sci., vol. 26, pp. 4–140. Heidelberg, Springer (1990)])Google Scholar
  41. 41.
    Kufner, A.: Einige Eigenschaften der Sobolevschen Räume mit Belegungsfunktion. Czech. Math. J. 15(90), 597–620 (1965)MathSciNetGoogle Scholar
  42. 42.
    Kufner, A.: Imbedding theorems for general Sobolev weight spaces. Ann. Scuola Norm. Sup. Pisa 23, 373–386 (1969)MATHMathSciNetGoogle Scholar
  43. 43.
    Kufner, A.: Weighted Sobolev spaces. Teubner-Texte Math., vol. 31. Teubner, Leipzig (1980)Google Scholar
  44. 44.
    Kulanin, E.D.: Estimates for diameters of Sobolev classes of small-order smoothness. Cand. Sci (Phys.-Math.) Dissertation. MSU, Moscow, 1986 [in Russian]Google Scholar
  45. 45.
    Lang, J.: Improved estimates for the approximation numbers of Hardy-type operators. J. Appr. Theory 121(1), 61–70 (2003)CrossRefMATHGoogle Scholar
  46. 46.
    Leoni, G.: A first course in Sobolev spaces. Graduate Studies in Mathematics, vol. 105. AMS, Providence (2009)Google Scholar
  47. 47.
    Lifshits, M.A., Linde, W.: Approximation and entropy numbers of Volterra operators with application to Brownian motion. Mem. Am. Math. Soc. 745 (2002)Google Scholar
  48. 48.
    Lifshits, M.A.: Bounds for entropy numbers for some critical operators. Trans. Am. Math. Soc. 364(4), 1797–1813 (2012)CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Lifshits, M.A., Linde, W.: Compactness properties of weighted summation operators on trees. Studia Math. 202(1), 17–47 (2011)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Lifshits, M.A., Linde, W.: Compactness properties of weighted summation operators on trees—the critical case. Studia Math. 206(1), 75–96 (2011)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Lizorkin, P.I., Otelbaev, M.: Imbedding and compactness theorems for Sobolev-type spaces with weights. I. Mat. Sb. 108(3), 358–377 (1979) [ Math. USSR-Sb. 36(3), 331–349 (1980)]Google Scholar
  52. 52.
    Lizorkin, P.I., Otelbaev, M.: Imbedding and compactness theorems for Sobolev-type spaces with weights. II. Mat. Sb. 112(1), 56–85 (1980) [ Math. USSR-Sb. 40(1), 51–77 (1981)]Google Scholar
  53. 53.
    Lizorkin, P.I., Otelbaev, M.: Estimates of approximate numbers of the imbedding operators for spaces of Sobolev type with weights. Trudy Mat. Inst. Steklova 170, 213–232 (1984) [ Proc. Steklov Inst. Math., 170, 245–266 (1987)]Google Scholar
  54. 54.
    Lomakina, E.N., Stepanov, V.D.: On asymptotic behavior of the approximation numbers and estimates of Schatten-von Neumann norms of the Hardy-type integral operators. In: Function Spaces and Applications (Proceedings of Delhi Conference, 1997), pp. 153–187. Narosa Publishing House, New Delhi (2000)Google Scholar
  55. 55.
    Lomakina, E.N., Stepanov, V.D.: Asymptotic estimates for the approximation and entropy numbers of the one-weight Riemann-Liouville operator. Mat. Tr. 9(1), 52–100 (2006) [ Siberian Adv. Math., 17(1), 1–36 (2007)]Google Scholar
  56. 56.
    Maiorov, V.E.: Discretization of the problem of diameters. Uspekhi Mat. Nauk 30(6), 179–180 (1975)MATHMathSciNetGoogle Scholar
  57. 57.
    Maz’ja [Maz’ya], V.G.: Sobolev spaces. Leningrad. Univ., Leningrad, 1985. Springer, Berlin (1985)Google Scholar
  58. 58.
    Naimark, K., Solomyak, M.: Geometry of Sobolev spaces on regular trees and the Hardy inequality. Russian J. Math. Phys. 8(3), 322–335 (2001)MATHMathSciNetGoogle Scholar
  59. 59.
    Nečas, J.: Sur une méthode pour résoudre les equations aux dérivées partielles dy type elliptique, voisine de la varitionnelle. Ann. Scuola Norm. Sup. Pisa 16(4), 305–326 (1962)MATHMathSciNetGoogle Scholar
  60. 60.
    Otelbaev, M.O.: Estimates of the diameters in the sense of Kolmogorov for a class of weighted spaces. Dokl. Akad. Nauk SSSR 235(6), 1270–1273 (1977) [Soviet Math. Dokl.]Google Scholar
  61. 61.
    Pietsch, A.: \(s\)-numbers of operators in Banach space. Studia Math. 51, 201–223 (1974)MATHMathSciNetGoogle Scholar
  62. 62.
    Pinkus, A.: \(n\)-widths in approximation theory. Springer, Berlin (1985)CrossRefMATHGoogle Scholar
  63. 63.
    Pisier, G.: The Volume of Convex Bodies and Banach Spaces Geometry. Cambridge Univ. Press, New York (1989)CrossRefGoogle Scholar
  64. 64.
    Reshetnyak, Yu.G.: Integral representations of differentiable functions in domains with a nonsmooth boundary. Sibirsk. Mat. Zh. 21(6), 108–116 (1980). (in Russian)Google Scholar
  65. 65.
    Reshetnyak, Yu.G.: A remark on integral representations of differentiable functions of several variables. Sibirsk. Mat. Zh. 25(5), 198–200 (1984). (in Russian)Google Scholar
  66. 66.
    Sobolev, S.L.: On a theorem of functional analysis. Mat. Sb. (4) 46(3), 471–497 (1938) [ Amer. Math. Soc. Transl. (2) 34, 39–68 (1963)]Google Scholar
  67. 67.
    Sobolev, S.L.: Some Applications of Functional Analysis in Mathematical Physics. Univ, Leningrad, Izdat. Leningrad. Gos (1950). [Amer. Math. Soc., 1963]Google Scholar
  68. 68.
    Solomyak, M.: On approximation of functions from Sobolev spaces on metric graphs. J. Approx. Theory 121(2), 199–219 (2003)CrossRefMATHMathSciNetGoogle Scholar
  69. 69.
    Stesin, M.I.: Aleksandrov diameters of finite-dimensional sets and of classes of smooth functions. Dokl. Akad. Nauk SSSR 220(6), 1278–1281 (1975) [Soviet Math. Dokl.]Google Scholar
  70. 70.
    Temlyakov, V.N.: Approximation of periodic functions of several variables with bounded mixed derivative. Dokl. Akad. Nauk SSSR 253(3), 544–548 (1980)MathSciNetGoogle Scholar
  71. 71.
    Temlyakov, V.N.: Diameters of some classes of functions of several variables. Dokl. Akad. Nauk SSSR 267(3), 314–317 (1982)MathSciNetGoogle Scholar
  72. 72.
    Temlyakov, V.N.: Approximation of functions with bounded mixed difference by trigonometric polynomials, and diameters of certain classes of functions. Math. USSR-Izv. 20(1), 173–187 (1983)CrossRefMATHGoogle Scholar
  73. 73.
    Tikhomirov, V.M.: Diameters of sets in functional spaces and the theory of best approximations. Russian Math. Surv. 15(3), 75–111 (1960)CrossRefMATHGoogle Scholar
  74. 74.
    Tikhomirov, V.M.: Some questions in approximation theory. Univ, Moscow, Izdat. Moskov (1976). [in Russian]Google Scholar
  75. 75.
    Tikhomirov, V.M.: Theory of approximations. In: Current Problems in Mathematics. Fundamental Directions, vol. 14. ( Itogi Nauki i Tekhniki) (Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987), pp. 103–260 [Encycl. Math. Sci. vol. 14, pp. 93–243 (1990)]Google Scholar
  76. 76.
    Tikhomirov, V.M., Babadzanov, S.B.: Diameters of a function class in an \(L^p\)-space \((p\ge 1)\). Izv. Akad. Nauk UzSSR, Ser. Fiz. Mat. Nauk, 11(2), 24–30 (1967) (in Russian)Google Scholar
  77. 77.
    Triebel, H.: Interpolation theory, function spaces, differential operators. North-Holland Mathematical Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978) (Mir, Moscow, 1980)Google Scholar
  78. 78.
    Triebel, H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)MATHGoogle Scholar
  79. 79.
    Triebel, H.: Entropy and approximation numbers of limiting embeddings, an approach via Hardy inequalities and quadratic forms. J. Approx. Theory 164(1), 31–46 (2012)CrossRefMATHMathSciNetGoogle Scholar
  80. 80.
    Turesson, B.O.: Nonlinear potential theory and weighted Sobolev spaces. Lecture Notes in Mathematics, vol. 1736. Springer, Berlin (2000)Google Scholar
  81. 81.
    Vasil’eva, A.A.: Kolmogorov widths and approximation numbers of Sobolev classes with singular weights. Algebra i Analiz 24(1), 3–39 (2012) [St. Petersburg Math. J. 24(1), 1–27 (2013)]Google Scholar
  82. 82.
    Vasil’eva, A.A.: Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin. J. Approx. Theory 167, 1–41 (2013)CrossRefMATHMathSciNetGoogle Scholar
  83. 83.
    Vasil’eva, A.A.: Widths of weighted Sobolev classes on a John domain. Proc. Steklov Inst. Math. 280, 91–119 (2013)CrossRefGoogle Scholar
  84. 84.
    Vasil’eva, A.A.: Kolmogorov widths of weighted Sobolev classes on a domain for a special class of weights. II. Russian J. Math. Phys. 18(4), 465–504Google Scholar
  85. 85.
    Vasil’eva, A.A.: Kolmogorov widths of weighted Sobolev classes on a cube. Trudy Inst. Mat. i Mekh. UrO RAN 16(4), 100–116 (2010)Google Scholar
  86. 86.
    Vybiral, J.: Widths of embeddings in function spaces. J. Complex. 24, 545–570 (2008)CrossRefMATHMathSciNetGoogle Scholar
  87. 87.
    Yakovlev, G.N.: On a density of finite functions in weighted spaces. Dokl. Akad. Nauk SSSR 170(4), 797–798 (1966) [in Russian]Google Scholar

Copyright information

© Universidad Complutense de Madrid 2013

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussian Federation

Personalised recommendations