Revista Matemática Complutense

, Volume 26, Issue 2, pp 299–340

# Mathematical analysis of fluids in motion: from well-posedness to model reduction

Article

## Abstract

This paper reviews some recent results on the Navier-Stokes-Fourier system governing the evolution of a general compressible, viscous, and heat conducting fluid. We discuss several concepts of weak solutions, in particular, using the implications of the Second law of thermodynamics. We introduce the concept of relative entropy and dissipative solution and show the principle of weak-strong uniqueness. The second part of the paper is devoted to problems of model reduction and the related singular limits. Several examples of singular limits are presented: The incompressible limit, the inviscid limit, the low Rossby number limit and their combinations.

### Keywords

Navier-Stokes-Fourier system Compressible fluid Singular limits Relative entropy

35Q30 76D05

## Notes

### Acknowledgments

Eduard Feireisl acknowledges the support of the project LL1202 in the programme ERC-CZ funded by the Ministry of Education, Youth and Sports of the Czech Republic.

### References

1. 1.
Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48, 1133–1176 (1999)
2. 2.
Babin, A., Mahalov, A., Nicolaenko, B.: 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J. 50 (Special Issue), 1–35 (2001)Google Scholar
3. 3.
Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)
4. 4.
Bechtel, S.E., Rooney, F.J., Forest, M.G.: Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids. J. Appl. Mech. 72, 299–300 (2005)
5. 5.
Bechtel, S.E., Rooney, Q., Wang, F.J.: A thermodynamic definition of pressure for incompressible viscous fluids. Int. J. Eng. Sci. 42, 1987–1994 (2004)
6. 6.
Bella, P., Feireisl, E., Pražák, D.: Long time behavior and stabilization to equilibria of solutions to the Navier-Stokes-Fourier system driven by highly oscillating unbounded external forces. J. Dyn. Differ. Equ. (2013) (to appear)Google Scholar
7. 7.
Bulíček, M., Málek, J., Rajagopal, K.R.: Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear- rate dependent viscosity. Indiana Univ. Math. J. 56, 51–86 (2007)
8. 8.
Caffarelli, L., Kohn, R.V., Nirenberg, L.: On the regularity of the solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)
9. 9.
Callen, H.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1985)
10. 10.
Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics, volume 32 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, Oxford (2006)Google Scholar
11. 11.
Cheskidov, A., Friedlander, S., Shvydkoy, R.: On the energy equality for weak solutions of the 3D Navier-Stokes equations. In: Advances in Mathematical Fluid Mechanics, pp. 171–175. Springer, Berlin (2010)Google Scholar
12. 12.
Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, New York (1979)
13. 13.
Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry. Texts and monographs in physics, Springer, Berlin (1987)Google Scholar
14. 14.
Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70, 167–179 (1979)
15. 15.
De Lellis, C., Székelyhidi, L. Jr.: The $$h$$-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. (N.S.), 49(3), 347–375 (2012)Google Scholar
16. 16.
Desjardins, B., Grenier, E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455(1986), 2271–2279 (1999)
17. 17.
Desjardins, B., Grenier, E., Lions, P.-L., Masmoudi, N.: Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)
18. 18.
Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255 (2000)
19. 19.
Ducomet, B., Feireisl, E.: On the dynamics of gaseous stars. Arch. Rational Mech. Anal. 174, 221–266 (2004)
20. 20.
Eliezer, S., Ghatak, A., Hora, H.: An Introduction to Equations of States, Theory and Applications. Cambridge University Press, Cambridge (1986)Google Scholar
21. 21.
Ericksen, J.L.: Introduction to the Thermodynamics of Solids. Applied Mathematical Sciences, revised edn, vol. 131, Springer, New York (1998)Google Scholar
22. 22.
Fefferman, C.L.: Existence and smoothness of the Navier-Stokes equation. In: The Millennium Prize Problems, pp. 57–67. Clay Math. Inst., Cambridge (2006)Google Scholar
23. 23.
Feireisl, E.: Local decay of acoustic waves in the low Mach number limits on general unbounded domains under slip boundary conditions. Commun. Partial Differ. Equ. (2010) (submitted)Google Scholar
24. 24.
Feireisl, E., Gallagher, I., Gerard-Varet, D., Novotný, A.: Multi-scale analysis of compressible viscous and rotating fluids. Commun. Math. Phys. 314, 641–670 (2012)
25. 25.
Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser-Verlag, Basel (2009)
26. 26.
Feireisl, E., Novotný, A.: Inviscid incompressible limits of the full Navier-Stokes-Fourier system. Commun. Math. Phys. (2012) (to appear)Google Scholar
27. 27.
Feireisl, E., Novotný, A.: Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)
28. 28.
Feireisl, E., Novotný, A., Sun, Y.: A regularity criterion for the weak solutions to the Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. (2012) (submitted)Google Scholar
29. 29.
Feireisl, E., Pražák, D.: A stabilizing effect of a high frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discr. Cont. Dyn. Syst. Ser. S. 2, 95–111 (2009)Google Scholar
30. 30.
Feireisl, E., Pražák, D.: Asymptotic Behavior of Dynamical Systems in Fluid Mechanics. AIMS, Springfield (2010)
31. 31.
Feireisl, E., Schonbek, M.E.: On the Oberbeck-Boussinesq approximation on unbounded domains. In: Abel Symposium Lecture Notes. Springer, Berlin (2011)Google Scholar
32. 32.
Gallavotti, G.: Foundations of Fluid Dynamics. Springer, New York (2002)
33. 33.
Golse, F.: The Boltzmann equation and its hydrodynamic limits. In: Evolutionary Equations. Vol. II. Handb. Differ. Equ., pp. 159–301. Elsevier/North-Holland, Amsterdam (2005)Google Scholar
34. 34.
Hesla, T.I.: Collision of Smooth Bodies in a Viscous Fluid: A Mathematical Investigation. PhD Thesis Minnesota (2005)Google Scholar
35. 35.
Hillairet, M.: Lack of collision between solid bodies in a 2D incompressible viscous flow. Commun. Partial Differ. Equ. 32(7–9), 1345–1371 (2007)
36. 36.
Hillairet, M., Takahashi, T.: Collisions in three-dimensional fluid structure interaction problems. SIAM J. Math. Anal. 40(6), 2451–2477 (2009)
37. 37.
Hoff, D.: Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Commun. Pure Appl. Math. 55, 1365–1407 (2002)
38. 38.
Hoff, D., Santos, M.M.: Lagrangean structure and propagation of singularities in multidimensional compressible flow. Arch. Ration. Mech. Anal. 188(3), 509–543 (2008)
39. 39.
Jesslé, D., Jin, B.J., Novotný, A.: Navier-Stokes-Fourier system on unbounded domains: weak solutions, relative entropies, weak-strong uniqueness (2012) (preprint)Google Scholar
40. 40.
Kato, T.: Remarks on the zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Chern, S.S. (ed.) Seminar on PDE’s. Springer, New York (1984)Google Scholar
41. 41.
Kato, T., Lai, C.Y.: Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56, 15–28 (1984)
42. 42.
Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)
43. 43.
Klein, R.: Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. Z. Angw. Math. Mech. 80, 765–777 (2000)
44. 44.
Klein, R.: Multiple spatial scales in engineering and atmospheric low Mach number flows. ESAIM Math. Mod. Numer. Anal. 39, 537–559 (2005)Google Scholar
45. 45.
Klein, R., Botta, N., Schneider, T., Munz, C.D., Roller, S., Meister, A., Hoffmann, L., Sonar, T.: Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Eng. Math. 39, 261–343 (2001)
46. 46.
Leis, R.: Initial-Boundary Value Problems in Mathematical Physics. B.G. Teubner, Stuttgart (1986)
47. 47.
Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)
48. 48.
Lighthill, J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A. 211, 564–587 (1952)Google Scholar
49. 49.
Lighthill, J.: On sound generated aerodynamically II. General theory. Proc. R. Soc. Lond. A. 222, 1–32 (1954)Google Scholar
50. 50.
Lighthill, J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)
51. 51.
Lions, P.-L.: Mathematical Topics in Fluid Dynamics, vol. 1. Incompressible Models. Oxford Science Publication, Oxford (1996)Google Scholar
52. 52.
Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)
53. 53.
Liu, J.-G., Liu, J., Pego, R.L.: On incompressible Navier-Stokes dynamics: a new approach for analysis and computation. In: Hyperbolic Problems: Theory, Numerics and Applications, vol. I, pp. 29–44. Yokohama Publ., Yokohama (2006)Google Scholar
54. 54.
Liu, J.-G., Liu, J., Pego, R.L.: Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate. Commun. Pure Appl. Math. 60(10), 1443–1487 (2007)
55. 55.
Masmoudi, N.: The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary. Arch. Rational Mech. Anal. 142(4), 375–394 (1998)
56. 56.
Masmoudi, N.: Asymptotic problems and compressible and incompressible limits. In: Málek, J., Nečas, J., Rokyta, M. (eds.) Advances in Mathematical Fluid Mechanics, pp. 119–158. Springer, Berlin (2000)Google Scholar
57. 57.
Masmoudi, N.: Ekman layers of rotating fluids: the case of general initial data. Commun. Pure Appl. Math. 53(4), 432–483 (2000)
58. 58.
Masmoudi, N.: Incompressible inviscid limit of the compressible Navier-Stokes system. Ann. Inst. H. Poincaré, Anal. non linéaire 18, 199–224 (2001)Google Scholar
59. 59.
Masmoudi, N.: Examples of singular limits in hydrodynamics. In: Dafermos, C., Feireisl, E. (eds.) Handbook of Differential Equations, III. Elsevier, Amsterdam (2006)Google Scholar
60. 60.
Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)
61. 61.
Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)
62. 62.
Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37, Springer, Heidelberg (1998)Google Scholar
63. 63.
Priezjev, N.V., Darhuber A.A., Troian, S.M.: Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71, 041608 (2005)Google Scholar
64. 64.
Priezjev, N.V., Troian, S.M.: Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)
65. 65.
Prodi, G.: Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)
66. 66.
Reed, M., Simon, B.: Methods of modern mathematical physics, vol. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)Google Scholar
67. 67.
Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)
68. 68.
Schochet, S.: The mathematical theory of low Mach number flows. M2ANMath. Model Numer. Anal. 39, 441–458 (2005)Google Scholar
69. 69.
Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)
70. 70.
Shnirelman, A.: Weak solutions of incompressible Euler equations. In: Handbook of Mathematical Fluid Dynamics, vol. II, pp. 87–116. North-Holland, Amsterdam (2003)Google Scholar
71. 71.
Shvydkoy, R.: Lectures on the Onsager conjecture. Discret. Contin. Dyn. Syst. Ser. S. 3(3), 473–496 (2010)
72. 72.
Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel (2001)
73. 73.
Valli, A.: A correction to the paper: An existence theorem for compressible viscous fluids (Ann. Mat. Pura Appl. 130(4), 197–213 (1982); MR 83h:35112). Ann. Mat. Pura Appl. 132 (4), 399–400 (1983)(1982)Google Scholar
74. 74.
Valli, A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. 130(4), 197–213 (1982)Google Scholar
75. 75.
Valli, A., Zajaczkowski, M.: Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)
76. 76.
Wiedemann, E.: Existence of weak solutions for the incompressible Euler equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(5), 727–730 (2011)Google Scholar
77. 77.
Xin, Z.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)