Revista Matemática Complutense

, Volume 26, Issue 2, pp 409–426 | Cite as

Convergence of a numerical scheme for a coupled Schrödinger–KdV system

  • Paulo AmorimEmail author
  • Mário Figueira


We prove the convergence in a strong norm of a finite difference semidiscrete scheme approximating a coupled Schrödinger–KdV system on a bounded domain. This system models the interaction of short and long waves. Since the energy estimates available in the continuous case do not carry over to the discrete setting, we rely on a suitably truncated problem which we prove reduces to the original one. We present some numerical examples to illustrate our convergence result.


Nonlinear Schrödinger equation Korteweg–de Vries equation Short wave long wave interaction Finite difference scheme 

Mathematics Subject Classification

35Q55 35Q53 



The authors were supported by the Portuguese Foundation for Science and Technology (FCT), PEst OE/MAT/UI0209/2011, and the FCT grant PTDC/MAT/110613/2009. PA was also supported by FCT through a Ciência 2008 fellowship.


  1. 1.
    Bekiranov, D., Ogawa, T., Ponce, G.: Interaction equations for short and long dispersive waves. J. Funct. Anal. 158(2), 357–388 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Benney, D.J.: A general theory for interactions between short and long waves. Stud. Appl. Math. 56, 81–94 (1977) MathSciNetGoogle Scholar
  3. 3.
    Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Corcho, A.J., Linares, F.: Well-posedness for the Schrödinger–Korteweg–de Vries system. Trans. Am. Math. Soc. 359(9), 4089–4106 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Craig, W., Guyenne, Ph., Sulem, C.: Coupling between internal and surface waves. Nat. Hazards 57, 617–642 (2011) CrossRefGoogle Scholar
  6. 6.
    Dias, J.-P., Figueira, M., Oliveira, F.: Well-posedness and existence of bound states for a coupled Schrödinger–gKdV system. Nonlinear Anal. 73(8), 2686–2698 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dias, J.-P., Figueira, M., Oliveira, F.: Existence of bound states for the coupled Schrödinger–gKdV system with cubic nonlinearity. C. R. Math. Acad. Sci. Paris 384(19–20), 1079–1082 (2010) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kato, T.: On the Cauchy problem for the (generalized) Korteweg–de Vries equation. Studies in applied mathematics. In: Adv. Math. Suppl. Stud., vol. 8, pp. 93–128. Academic Press, New York (1983) Google Scholar
  9. 9.
    Kawahara, T., Sugimoto, N., Kakutani, T.: Nonlinear interaction between short and long capillary-gravity waves. J. Phys. Soc. Jpn. 39, 1379–1386 (1975) CrossRefGoogle Scholar
  10. 10.
    Kenig, C.E., Ponce, G., Vega, L.: The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices. Duke Math. J. 71(1), 1–21 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kenig, C.E., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9(2), 573–603 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Nishikawa, K., Hojo, H., Mima, K., Ikezi, H.: Coupled nonlinear electron-plasma and ion acoustic waves. Phys. Rev. Lett. 33, 148–151 (1974) CrossRefGoogle Scholar
  13. 13.
    Tsutsumi, M.: Well-posedness of the Cauchy problem for a coupled Schrödinger–KdV equation. Nonlinear mathematical problems in industry, II. In: GAKUTO Internat. Ser. Math. Sci. Appl., vol. 2, pp. 513–528, Iwaki, 1992 (1993) Google Scholar
  14. 14.
    Yajima, N., Satsuma, J.: Soliton solutions in a diatomic lattice system. Prog. Theor. Phys. 62, 370–378 (1979) CrossRefGoogle Scholar

Copyright information

© Revista Matemática Complutense 2012

Authors and Affiliations

  1. 1.Centro de Matemática e Aplicações Fundamentais and Departamento de MatemáticaFaculdade de Ciências da Universidade de LisboaLisboaPortugal

Personalised recommendations