Revista Matemática Complutense

, Volume 24, Issue 2, pp 527–538 | Cite as

Isotropic subspaces of Orlik-Solomon algebras

Article
  • 29 Downloads

Abstract

We give a combinatorial characterization of isotropic subspaces in the Orlik-Solomon algebra of a hyperplane arrangement in terms of decorations of its intersection lattice. We then use this characterization to prove a result that relates these isotropic subspaces with linear systems supported on the arrangement, for arrangements with isolated non-normal crossings of a particular form.

Keywords

Hyperplane arrangements Orlik-solomon algebra Linear systems 

Mathematics Subject Classification (2000)

32S22 52C35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catanese, F.: Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations. Invent. Math. 104(2), 263–289 (1991) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Falk, M., Yuzvinsky, S.: Multinets, resonance varieties, and pencils of plane curves. Compos. Math. 143(4), 1069–1088 (2007) MathSciNetMATHGoogle Scholar
  3. 3.
    Libgober, A.: Isolated non-normal crossings. In: Real and Complex Singularities. Contemp. Math., vol. 354, pp. 145–160. Am. Math. Soc., Providence (2004) Google Scholar
  4. 4.
    Libgober, A., Yuzvinsky, S.: Cohomology of the Orlik-Solomon algebras and local systems. Compos. Math. 121(3), 337–361 (2000) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Marco-Buzunáriz, M.A.: A description of the resonance variety of a line combinatorics via combinatorial pencils. Graphs Combin. 25(4), 469–488 (2009) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300. Springer, Berlin (1992) MATHGoogle Scholar
  7. 7.
    Yuzvinsky, S.: Realization of finite abelian groups by nets in ℙ2. Compos. Math. 140(6), 1614–1624 (2004) MathSciNetMATHGoogle Scholar

Copyright information

© Revista Matemática Complutense 2010

Authors and Affiliations

  1. 1.Centro Universitario de la DefensaAcademia General MilitarZaragozaSpain

Personalised recommendations