Revista Matemática Complutense

, Volume 24, Issue 2, pp 465–492

On Kummer 3-folds

Open Access
Article

Abstract

We investigate a generalization of Kummer construction, as introduced in Andreatta and Wiśniewski (Rev. Mat. Complut. 23:191–251, 2010). The aim of this work is to classify 3-dimensional Kummer varieties by computing their Poincaré polynomials.

Keywords

Kummer construction Calabi-Yau variety Integral matrix groups Quotient singularity Virtual Poincaré polynomial 

Mathematics Subject Classification (2000)

14J32 20C10 14F43 14J17 

References

  1. 1.
    Andreatta, M., Wiśniewski, J.A.: On the Kummer construction. Rev. Mat. Complut. 23, 191–251 (2010) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bertin, J., Markushevich, D.: Singularités quotients non abéliennes de dimension 3 et variétés de Calabi–Yau. Math. Ann. 299(1), 105–116 (1994) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bredon, G.E.: Introduction to Compact Transformation Groups. Academic Press, New York (1972) MATHGoogle Scholar
  4. 4.
    Carat—Crystallographic algorithms and tables. http://wwwb.math.rwth-aachen.de/carat
  5. 5.
    Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993) MATHGoogle Scholar
  6. 6.
    Fulton, W., Harris, J.: Representation Theory, A First Course. Graduate Texts in Mathematics, vol. 129. Springer, Berlin (1991) MATHGoogle Scholar
  7. 7.
    Gap—Groups, algorithms, and programming, Version 4.4.10. The GAP Group. http://www.gap-system.org (2007)
  8. 8.
    Kaledin, D.: McKay correspondence for symplectic quotient singularities. Invent. Math. 148(1), 151–175 (2002) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Newman, M.: Integral Matrices. Academic Press, New York (1972) MATHGoogle Scholar
  10. 10.
    Opgenorth, J., Plesken, W., Schulz, T.: Crystallographic algorithms and tables. Acta Crystallogr., Ser. A 54, 517–531 (1998) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Reid, M.: La correspondance de McKay. Astérisque 276, 53–72 (2002). Séminaire Bourbaki, Vol. 1999/2000 Google Scholar
  12. 12.
    Tahara, K.: On the finite subgroups of GL(3, Z). Nagoya Math. J. 41, 169–209 (1971) MathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Instytut Matematyki UWWarszawaPoland

Personalised recommendations