Revista Matemática Complutense

, Volume 24, Issue 1, pp 59–81 | Cite as

Topology of symplectic torus actions with symplectic orbits

Open Access


We give a concise overview of the classification theory of symplectic manifolds equipped with torus actions for which the orbits are symplectic (this is equivalent to the existence of a symplectic principal orbit), and apply this theory to study the structure of the leaf space induced by the action. In particular we show that if M is a symplectic manifold on which a torus T acts effectively with symplectic orbits, then the leaf space M/T is a very good orbifold with first Betti number b1(M/T)=b1(M)−dim T.


Symplectic manifold Torus action Orbifold Betti number Lie group Symplectic orbit Distribution Foliation 

Mathematics Subject Classification (2000)

53D35 53C10 


  1. 1.
    Armstrong, M.A.: The fundamental group of the orbit space of a discontinuous group. Math. Proc. Camb. Philos. Soc. 64, 299–301 (1968) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Atiyah, M.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14, 1–15 (1982) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Benoist, Y.: Actions symplectiques de groupes compacts. Geom. Dedic. 89, 181–245 (2002) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bochner, S.: Compact groups of differentiable transformations. Ann. Math. 46, 372–381 (1945) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Boileau, M., Maillot, S., Porti, J.: Three-Dimensional Orbifolds and Their Geometric Structures. Panoramas et Synthèses, No. 15. Société Mathématique de France, Montrouge (2003) MATHGoogle Scholar
  6. 6.
    Chaperon, M.: Quelques outils de la théorie des actions différentiables. In: III rencontre de géométrie de Schnepfenried, vol. 1, 10–15 mai 1982. Astérisque, vols. 107–108, pp. 259–275. Société Mathématique de France, Montrouge (1983) Google Scholar
  7. 7.
    Dehn, M.: Die Gruppe der Abbildungsklassen. Acta Math. 69, 135–206 (1938) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Delzant, T.: Hamiltoniens périodiques et image convex de l’application moment. Bull. Soc. Math. France 116, 315–339 (1988) MATHMathSciNetGoogle Scholar
  9. 9.
    Duistermaat, J.J.: On global action-angle variables. Commun. Pure Appl. Math. 33, 687–706 (1980) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Duistermaat, J.J.: The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator. Birkhäuser, Boston (1996) MATHGoogle Scholar
  11. 11.
    Duistermaat, J.J., Pelayo, A.: Symplectic torus actions with coisotropic principal orbits. Ann. Inst. Fourier, Grenoble 57(7), 2239–2327 (2007) MATHMathSciNetGoogle Scholar
  12. 12.
    Duistermaat, J.J., Pelayo, A.: Complex structures on 4-manifolds with symplectic 2-torus actions. Preprint (2009) Google Scholar
  13. 13.
    Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. 67, 491–513 (1982) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Guillemin, V.: Moment Maps and Combinatorial Invariants of Hamiltonian T n-Spaces. Birkhäuser, Boston (1994) Google Scholar
  15. 15.
    Ginzburg, V.L.: Some remarks on symplectic actions of compact groups. Math. Z. 210, 625–640 (1992) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kahn, P.J.: Symplectic torus bundles and group extensions. N. Y. J. Math. 11, 35–55 (2005). Also at MATHMathSciNetGoogle Scholar
  17. 17.
    Karshon, Y., Tolman, S.: Complete invariants for Hamiltonian torus actions with two dimensional quotients. J. Symplectic Geom. 2(1), 25–82 (2003) MATHMathSciNetGoogle Scholar
  18. 18.
    Karshon, Y., Tolman, S.: Centered complexity one Hamiltonian torus actions. Trans. Am. Math. Soc. 353(12), 4831–4861 (2001) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kirwan, F.C.: Cohomology of Quotients in Symplectic and Algebraic Geometry. Math Notes, 31. Princeton University Press, Princeton (1984) MATHGoogle Scholar
  20. 20.
    Kogan, M.: On completely integrable systems with local torus actions. Ann. Glob. Anal. Geom. 15(6), 543–553 (1997) MATHCrossRefGoogle Scholar
  21. 21.
    Koszul, J.L.: Sur certains groupes de Lie. In: Géometrie Différentielle. Coll. Int. CNRS, vol. 52, pp. 137–141. CNRS, Paris (1953) Google Scholar
  22. 22.
    Hu, S.-T.: An exposition of the relative homotopy theory. Duke Math. J. 14, 991–1033 (1947) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory. Presentations of Groups in Terms of Generators and Relations. Dover, Mineola (2004). Reprint of the 1976 second edition MATHGoogle Scholar
  24. 24.
    McDuff, D.: The moment map for circle actions on symplectic manifolds. J. Geom. Phys. 5(2), 149–160 (1988) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    McDuff, D., Salamon, D.A.: Introduction to Symplectic Topology, 2nd edn. Oxford University Press, Oxford (1998) MATHGoogle Scholar
  26. 26.
    Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965) MATHCrossRefGoogle Scholar
  27. 27.
    Novikov, S.P.: The Hamiltonian formalism and a multivalued analogue of Morse theory. Russ. Math. Surv. 37(5), 1–56 (1982) MATHCrossRefGoogle Scholar
  28. 28.
    Orlik, P., Raymond, F.: Actions of the torus on 4-manifolds, I. Trans. Am. Math. Soc. 152, 531–559 (1970) MATHMathSciNetGoogle Scholar
  29. 29.
    Orlik, P., Raymond, F.: Actions of the torus on 4-manifolds, II. Topology 13, 89–112 (1974) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Ortega, J.-P., Ratiu, T.S.: A symplectic slice theorem. Lett. Math. Phys. 59, 81–93 (2002) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Pao, P.S.: The topological structure of 4-manifolds with effective torus actions, I. Trans. Am. Math. Soc. 227, 279–317 (1977) MATHMathSciNetGoogle Scholar
  32. 32.
    Pao, P.S.: The topological structure of 4-manifolds with effective torus actions, II. Ill. J. Math. 21, 883–894 (1977) MATHMathSciNetGoogle Scholar
  33. 33.
    Pelayo, A.: Symplectic Actions of 2-Tori on 4-Manifolds. Mem. Am. Math. Soc., vol. 204(959). Am. Math. Soc., Providence (2010) Google Scholar
  34. 34.
    Pelayo, A., Vũ Ngọc, S.: Semitoric integrable systems on symplectic 4-manifolds. Invent. Math. 177, 571–597 (2009) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Pelayo, A., Vũ Ngọc, S.: Constructing integrable systems of semitoric type. Acta Math., to appear Google Scholar
  36. 36.
    Poincaré, H.: Analysis situs. A series of articles on topology from 1895 until 1904. Reproduced on pp. 193–498. In: Œuvres de H. Poincaré, t. VI, Gauthier-Villars, Paris (1953) Google Scholar
  37. 37.
    Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15, 401–487 (1983) MATHCrossRefGoogle Scholar
  38. 38.
    Seifert, H., Threlfall, W.: Lehrbuch der Topologie. Teubner, Leipzig (1934) Google Scholar
  39. 39.
    Spanier, E.: Algebraic Topology. McGraw-Hill, New York (1966) xiv+528 pp. MATHGoogle Scholar
  40. 40.
    Thurston, W.P.: Three-Dimensional Geometry and Topology. MSRI, Berkeley, (1991). This book is based on the course notes The geometry and topology of 3-manifolds, Princeton Math. Dept., 1979. The discussion of orbifolds is not contained in the book Three-Dimensional Geometry and Topology, vol. 1, published by Princeton University Press in 1997, of which we could not find vol. 2 Google Scholar
  41. 41.
    Weinstein, A.: Symplectic manifolds and their Lagrangian submanifolds. Adv. Math. 6, 329–346 (1971) MATHCrossRefGoogle Scholar
  42. 42.
    Zung, N.T.: Symplectic topology of integrable Hamiltonian systems, I. Arnold-Liouville with singularities. Compos. Math. 101, 179–215 (1996) MATHGoogle Scholar
  43. 43.
    Zung, N.T.: Symplectic topology of integrable Hamiltonian systems, II. Topological classification. Compos. Math. 138(2), 125–156 (2003) MATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Mathematisch InstituutUniversiteit UtrechtUtrechtThe Netherlands
  2. 2.Mathematics DepartmentUniversity of California–BerkeleyBerkeleyUSA

Personalised recommendations