Skip to main content
Log in

Finite time-horizon optimal investment and consumption with time-varying subsistence consumption constraints

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider a general optimal consumption and portfolio selection problem of a finitely-lived agent whose consumption rate process is subject to time-varying subsistence consumption constraints. That is, her consumption rate should be greater than or equal to some convex, non-decreasing and continuous function of time t. Using martingale duality approach and Feynman–Kac formula, we derive the partial differential equation of the Cauchy problem satisfied by the dual value function. We use the integral transform method for solving this Cauchy problem to obtain the general optimal policies in an explicit form. With constant relative risk aversion and constant absolute risk aversion utility functions we illustrate some numerical results of the optimal policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Achury, C., Hubar, S., Koulovatianos, C.: Saving rates and portfolio choice with subsistence consumption. Rev. Econ. Dyn.15, 108–126 (2012)

    Article  Google Scholar 

  2. Bertrand, J., Bertrand, P., Ovarlez, J.: The Mellin Transform. The transforms and applications handbook. Alexander, D., (Ed.). 2 ed., CRC Press, Boca Raton (2000)

    Google Scholar 

  3. Cox, J.C., Huang, C.: Optimal consumption and portfolio policies when asset prices follow a diffusion process. J. Econ. Theory 49, 33–83 (1989)

    Article  MathSciNet  Google Scholar 

  4. Detemple, J.B., Zapatero, F.: Optimal consumption-portfolio policies with habit formation. Math. Financ. 2, 251–274 (1992)

    Article  Google Scholar 

  5. Dybvig, P.H.: Dusenberry's ratcheting of consumption: optimal dynamic consumption and investment given intolerance for any decline in standard of living. Rev. Econ. Stud. 62, 287–313 (1995)

    Article  Google Scholar 

  6. Erdlyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms. McGraw-Hill, New York (1954)

    Google Scholar 

  7. Fleming, W., Soner, H.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (2006)

    MATH  Google Scholar 

  8. Gong, N., Li, T.: Role of Index Bonds in an Optimal Dynamic Asset Allocation Model with Real Subsistence Consumption. Appl. Math. Comput. 174, 710–731 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Jeon, J.K., Han, H.J., Kang, M.J.: Valuing American floating strike lookback option and neumann problem for inhomogeneous Black-Scholes equation. J. Comput. Appl. Math.313, 218–234 (2017)

    Article  MathSciNet  Google Scholar 

  10. Jeon, J.K., Koo, H.K., Shin, Y.H.: Portfolio selection with consumption ratcheting. J. Econ. Dyn. Control 92, 153–182 (2018)

    Article  MathSciNet  Google Scholar 

  11. Karatzas, I., Lehoczky, J.P., Sethi, S.P., Shreve, S.E.: Explicit solution of a general consumption/investment problem. Math. Operations Res. 11, 261–294 (1986)

    Article  MathSciNet  Google Scholar 

  12. Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Optimal portfolio and consumption decisions for a "small investor" on a finite horizon. SIAM J. Control Optim. 25, 1557–1586 (1987)

    Article  MathSciNet  Google Scholar 

  13. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)

    Book  Google Scholar 

  14. Lakner, P., Nygren, L.M.: Portfolio optimization with downside constraints. Math. Financ.16, 283–299 (2006)

    Article  MathSciNet  Google Scholar 

  15. Lio, M.: The inframarginal analysis of demand and supply and the relationship between a minimum level of consumption and the division of labour. In: Arrow, K.J., Ng, Y.K., Yang, X. (eds.) Increasing Returns and Economic Analysis. Palgrave Macmillan, London (1998)

    Google Scholar 

  16. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  17. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373–413 (1971)

    Article  MathSciNet  Google Scholar 

  18. Panini, R., Srivastav, R.P.: Option pricing with mellin transforms. Math. Comput. Model. 40, 43–56 (2004)

    Article  MathSciNet  Google Scholar 

  19. Panini, R., Srivastav, R.P.: Pricing perpetual options using Mellin transforms. Appl. Math. Lett. 18, 471–474 (2005)

    Article  MathSciNet  Google Scholar 

  20. Shim, G., Shin,Y.H.: Portfolio selection with subsistence consumption constraints and CARA utility. Math. Probl. Eng. 6 (2014)

  21. Shin, Y.H., Lim, B.H., Choi, U.J.: Optimal consumption and portfolio selection problem with downside consumption constraints. Appl. Math. Comput.188, 1801–1811 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Sneddon, I.N.: The Use of Integral Transforms. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  23. Yuan, H., Hu, Y.: Optimal Consumption and Portfolio Policies with the Consumption Habit Constraints and the Terminal Wealth Downside Constraints, Insur. Math. Econ. 45, 405–409 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We greatly appreciate anonymous referee’s careful reading and valuable comments, which improve our paper essentially. We also appreciate Hyeng Keun Koo for helpful comments.

Funding

Junkee Jeon was supported by a grant from Kyung Hee University in 2019 (KHU-20191036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hyun Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Mellin transform

In this appendix, we use the Mellin transform method to obtain an analytic solution to the Cauchy problem for the Black-Scholes type partial differential operator. The definition and basic properties of Mellin transformation are summarized in Appendix A in [9]. Also, the reader can refer to [6, 22] and [2].

Theorem 4

(Non-homogeneous Black-Scholes type PDE) We consider the following Cauchy problem:

$$\begin{aligned} \begin{aligned}&\left( \dfrac{\partial }{\partial t} + {\mathcal {L}} \right) \phi (t,y) = f(t,y), \\&\phi (T,y) = g(y), \end{aligned} \end{aligned}$$
(5.1)

on the domain \(\{(t,y) \mid 0<t<T,\;0<y<\infty \}\), where the partial differential operator \({\mathcal {L}}\) is given in (3.7). Then, \(\phi (t,y)\) can be represented by

$$\begin{aligned}\begin{aligned} \phi (t,y)=\int _{0}^{\infty }g(v){\mathcal {G}}(T-t,\dfrac{y}{v})\dfrac{1}{v}dv -\int _{t}^{T}\int _{0}^{\infty }f(\eta ,v){\mathcal {G}}(\eta -t,\dfrac{y}{v})\dfrac{1}{v}dvd\eta , \end{aligned} \end{aligned}$$

where the kernel function \({\mathcal {G}}(\cdot ,\cdot )\) is given by

$$\begin{aligned} \begin{aligned} {\mathcal {G}}(t,y) = e^{-\frac{1}{2}\left\{ \left( \frac{1-k_2}{2}\right) ^2+k_1\right\} \theta ^2t}\cdot \dfrac{y^{\frac{1-k_2}{2}}}{\theta \sqrt{2\pi t}} \exp {\left\{ -\dfrac{1}{2}\dfrac{(\log {y})^2}{\theta ^2 t}\right\} }, \end{aligned} \end{aligned}$$
(5.2)

and \(k_1 = {2\beta }/{\theta ^2}\), \(k_2 = {2(\beta -r)}/{\theta ^2}\).

Proof

We denote \(\hat{\phi }(t,y^{*})\) as the Mellin transform of \(\phi (t,y)\). Then, by the inverse Mellin transform, we derive

$$\begin{aligned}\begin{aligned} \phi (t,y)=\dfrac{1}{2\pi i}\int _{c-i\infty }^{c+i\infty }\hat{\phi }(t,y^{*})y^{-y^{*}}dy^{*}. \end{aligned} \end{aligned}$$

The PDE in (5.1) is changed by the following ODE:

$$\begin{aligned} \begin{aligned} \dfrac{d\hat{\phi }}{dt}(t,y^{*})+\dfrac{1}{2}\theta ^2 Q(y^{*})\hat{\phi }(t,y^{*})&={\hat{f}}(t,y^{*})\\ Q(y^{*})&=\left( y^{*}\right) ^2+y^{*}(1-k_2)-k_1, \end{aligned} \end{aligned}$$
(5.3)

where \({\hat{f}}(t,y^{*})\) is the Mellin transform of f(ty), and \(k_1={2\beta }/{\theta ^2}\), \(k_2={2(\beta -r)}/{\theta ^2}\).

The non-homogeneous ODE (5.3) yields

$$\begin{aligned}\begin{aligned} \hat{\phi }(t,y^{*})=&e^{\frac{1}{2}\theta ^2 Q(y^{*})(T-t)}{\hat{g}}(y^{*})\\&-\int _{t}^{T}e^{\frac{1}{2}\theta ^2 Q(y^{*})(\eta -t)}{\hat{f}}(\eta ,y^{*})d\eta . \end{aligned} \end{aligned}$$

and consequently we obtain

$$\begin{aligned} \begin{aligned} {\phi }(t,y)=&\dfrac{1}{2\pi i}\int _{c-i\infty }^{c+i\infty }e^{\frac{1}{2}\theta ^2 Q(y^{*})(T-t)}{\hat{g}}(y^{*})y^{-y^{*}}dy^{*} \\&-\dfrac{1}{2\pi i}\int _{c-i\infty }^{c+i\infty }\int _{t}^{T}e^{\frac{1}{2}\theta ^2 Q(y^{*})(\eta -t)}{\hat{f}}(\eta ,y^{*})y^{-y^{*}}d\eta dy^{*}, \end{aligned} \end{aligned}$$
(5.4)

where \({\hat{g}}(y^{*})\) is the Mellin transform of g(y).

In addition, in order to calculate \(\phi (t,y)\) in (5.4), we consider

$$\begin{aligned} {\mathcal {G}}(t,y)=\dfrac{1}{2\pi i}\int _{c-i\infty }^{c+i\infty }e^{\frac{1}{2}\theta ^2 Q(y^{*})(T-t)}y^{-y^{*}}dy^{*}. \end{aligned}$$

Since \(e^{\frac{1}{2}\theta ^2 Q(y^{*})(T-t)}\), \({\hat{g}}(y^{*})\), and \({\hat{f}}(\eta ,y^{*})\) are the Mellin transforms of \({\mathcal {G}}(t,y)\), g(y), and f(ty), respectively, by using the Mellin convolution theorem in [2] we obtain

$$\begin{aligned}\begin{aligned} \phi (t,y)=\int _{0}^{\infty }g(v){\mathcal {G}}(T-t,\dfrac{y}{v})\dfrac{1}{v}dv-\int _{t}^{T}\int _{0}^{\infty }f(\eta ,v){\mathcal {G}}(\eta -t,\dfrac{y}{v})\dfrac{1}{v}dvd\eta , \end{aligned} \end{aligned}$$

where

$$\begin{aligned}\begin{aligned} {\mathcal {G}}(t,y)=e^{-\frac{1}{2}\left\{ \left( \frac{1-k_2}{2}\right) ^2 +k_1\right\} \theta ^2 t}\cdot \dfrac{y^{\frac{1-k_2}{2}}}{\theta \sqrt{2\pi t}}\exp {\left\{ -\frac{1}{2}\dfrac{(\log {y})^2}{\theta ^2 {t}}\right\} }. \end{aligned} \end{aligned}$$

\(\square\)

The following lemmas are also useful.

Lemma 1

For any real number \(\alpha\) and the kernel function \({\mathcal {G}}(t,y)\) in (5.2), we have

$$\begin{aligned}\begin{aligned}&\int _{0}^{b}v^{-\alpha }{\mathcal {G}}(t,\dfrac{y}{v})\dfrac{1}{v}dv = y^{-\alpha }e^{-\frac{1}{2}\{k_1-(1-k_2)\alpha -\alpha ^2\}\theta ^2 t}{\mathcal {N}}\left( \frac{-\log {\dfrac{y}{b}}+\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) ,\\&\quad \int _{b}^{\infty }v^{-\alpha }{\mathcal {G}}(t,\dfrac{y}{v})\dfrac{1}{v}dv = y^{-\alpha }e^{-\frac{1}{2}\{k_1-(1-k_2)\alpha -\alpha ^2\}\theta ^2 t}{\mathcal {N}}\left( \frac{\log {\dfrac{y}{b}}-\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) , \end{aligned} \end{aligned}$$

where \({\mathcal {N}}(\cdot )\) is a cumulative distribution function of the standard normal distribution.

Proof

First we consider

$$\begin{aligned}\begin{aligned}&\int _{0}^{b}v^{-\alpha }{\mathcal {G}}(t,\frac{y}{v})\frac{1}{v}dv\\&=\int _{0}^{b}v^{-\alpha }e^{-\frac{1 }{2}\left\{ \left( \frac{1-k_2}{2}\right) ^2 +k_1\right\} \theta ^2t}\cdot \dfrac{\left( \frac{y}{v}\right) ^{\frac{1-k_2}{2}}}{\theta \sqrt{2\pi t}}e^{-\frac{1}{2}\left( \frac{{\log {(y/v)}}}{{\theta \sqrt{t}}}\right) ^2} \dfrac{1}{v} dv \\&=-y^{-\alpha }e^{-\frac{1 }{2}\left\{ \left( \frac{1-k_2}{2}\right) ^2 +k_1\right\} \theta ^2t}\int _{\infty }^{\log {\frac{y}{b}}} e^{\alpha w} \dfrac{e^{\left( \frac{1-k_2}{2}\right) w}}{\theta \sqrt{2\pi t}}e^{-\frac{1}{2}\frac{w^2}{\theta ^2 t}}dw \\&=-y^{-\alpha }e^{-\frac{1}{2} \left\{ \left( \frac{1-k_2}{2}\right) ^2+k_1-\left( \frac{1-k_2}{2}+\alpha \right) ^2\right\} \theta ^2t}\\&\quad \int _{\infty }^{\log {\frac{y}{b}}}\dfrac{1}{\theta \sqrt{2\pi t}}\exp {\left\{ -\frac{1}{2}\left( \frac{w-\theta ^2t\left( \frac{1-k_2}{2}+\alpha \right) }{\theta \sqrt{t}} \right) ^2 \right\} }\; dw\\&=y^{-\alpha }e^{-\frac{1}{2}\left\{ k_1-(1-k_2)\alpha -\alpha ^2\right\} \theta ^2 t}{\mathcal {N}}\left( \dfrac{-\log {\frac{y}{b}}+\theta ^2 t \left( \frac{1-k_2}{2}+\alpha \right) }{\theta \sqrt{t}} \right) , \end{aligned} \end{aligned}$$

where the second equality is obtained from the transformation \(w=\log (y/v)\). Similarly we obtain

$$\begin{aligned}\begin{aligned}&\int _{b}^{\infty }v^{-\alpha }{\mathcal {G}}(t,\dfrac{y}{v})\dfrac{1}{v}dv\\&\quad = y^{-\alpha }e^{-\frac{1}{2}\{k_1-(1-k_2)\alpha -\alpha ^2\}\theta ^2 t}\\&\qquad {\mathcal {N}}\left( \frac{\log {\dfrac{y}{b}}-\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) . \end{aligned} \end{aligned}$$

\(\square\)

Lemma 2

For any real number \(\alpha\) and the kernel function \({\mathcal {G}}(t,y)\) in (5.2), we have

$$\begin{aligned}\begin{aligned}&\int _{0}^{b}v^{-\alpha }\log {v}\cdot {\mathcal {G}}(t,\dfrac{y}{v})\dfrac{1}{v}dv\\&\quad =y^{-\alpha }\left( \log {y}-\left( \dfrac{1-k_2}{2}+\alpha \right) \theta ^2 t\right) e^{-\frac{1}{2}\{k_1-(1-k_2)\alpha -\alpha ^2\}\theta ^2 t}\\&\qquad {\mathcal {N}}\left( \frac{-\log {\dfrac{y}{b}}+\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) \\&\qquad -y^{-\alpha }e^{-\frac{1}{2}\{k_1-(1-k_2)\alpha -\alpha ^2\}\theta ^2 t}\theta \sqrt{t}\cdot \mathbf{n}\left( \frac{-\log {\dfrac{y}{b}}+\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) , \end{aligned}\end{aligned}$$

where \(\mathbf{n}(\cdot )\) is a probability density function of the standard normal distribution.

Proof

We see that

$$\begin{aligned} \begin{aligned}&\int _{0}^{b}v^{-\alpha }\log {v}\cdot {\mathcal {G}}(t,\dfrac{y}{v})\dfrac{1}{v}dv\\&\quad =\int _{0}^{b}v^{-\alpha }(\log {y}-\log {\dfrac{y}{v}})\cdot {\mathcal {G}}(t,\dfrac{y}{v})\dfrac{1}{v}dv\\&\quad =\log {y}\int _{0}^{b}v^{-\alpha }{\mathcal {G}}(t,\dfrac{y}{v})\dfrac{1}{v}dv - \int _{0}^{b}v^{-\alpha }\log {\dfrac{y}{v}}\cdot {\mathcal {G}}(t,\dfrac{y}{v})\dfrac{1}{v}dv\\&\quad =y^{-\alpha }(\log {y})e^{-\frac{1}{2}\{k_1-(1-k_2)\alpha -\alpha ^2\}\theta ^2 t}{\mathcal {N}}\left( \frac{-\log {\dfrac{y}{b}}+\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) \\&\qquad - \int _{0}^{b}v^{-\alpha }\log {\dfrac{y}{v}}\cdot {\mathcal {G}}(t,\dfrac{y}{v})\dfrac{1}{v}dv, \end{aligned} \end{aligned}$$
(5.5)

where the last equality in (5.5) is due to Lemma 1. The integral of the last equality in (5.5) can be written as

$$\begin{aligned} \begin{aligned}&\int _{0}^{b}v^{-\alpha }\log {\dfrac{y}{v}}\cdot {\mathcal {G}}(t,\dfrac{y}{v})\dfrac{1}{v}dv \\&\quad =y^{-\alpha }e^{-\frac{1}{2}\left\{ \left( \frac{1-k_2}{2}\right) ^2 +k_1\right\} \theta ^2 t}\int _{0}^{b}\left( \dfrac{y}{v}\right) ^{\alpha }\log {\dfrac{y}{v}}\cdot \dfrac{\left( \frac{y}{v}\right) ^{\frac{1-k_2}{2}}}{\theta \sqrt{2\pi t}}e^{-\frac{1}{2}\left( \frac{{\log {(y/v)}}}{{\theta \sqrt{t}}}\right) ^2} \dfrac{1}{v} dv \\&\quad =-y^{-\alpha }e^{-\frac{1}{2}\left\{ \left( \frac{1-k_2}{2}\right) ^2 +k_1\right\} \theta ^2 t}\int _{\infty }^{\log {\frac{y}{b}}}\dfrac{1}{\theta \sqrt{2\pi t}}we^{\left( \alpha +\frac{1-k_2}{2}\right) w}e^{-\frac{w^2}{2\theta ^2 t}}dw\\&\quad =-y^{-\alpha }e^{-\frac{1}{2} \{k_1-(1-k_2)\alpha -\alpha ^2\}\theta ^2 t}\int _{\infty }^{\log {\frac{y}{b}}}\dfrac{1}{\theta \sqrt{2\pi t}}w\exp {\left\{ -\frac{1}{2}\left( \dfrac{w-\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) ^2\right\} }dw, \end{aligned} \end{aligned}$$
(5.6)

where the second equality is obtained from the transformation \(w=\log (y/v)\). The integral without the coefficient \(-y^{-\alpha }e^{-\frac{1}{2}\{k_1-(1-k_2)\alpha -\alpha ^2\}\theta ^2 t}\) of the last equality in the equation(5.6) can be given by

$$\begin{aligned} \begin{aligned}&\int _{\infty }^{\log {\frac{y}{b}}}\dfrac{1}{\theta \sqrt{2\pi t}}w\exp {\left\{ -\frac{1}{2}\left( \dfrac{w-\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) ^2\right\} }dw\\&\quad =\int _{\infty }^{\log {\frac{y}{b}}}\dfrac{1}{\theta \sqrt{2\pi t}}\left( w-\left( \dfrac{1-k_2}{2}+\alpha \right) \theta ^2 t\right) \exp {\left\{ -\frac{1}{2}\left( \dfrac{w-\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) ^2\right\} }dw\\&\qquad +\left( \dfrac{1-k_2}{2}+\alpha \right) \theta ^2 t\int _{\infty }^{\log {\frac{y}{b}}}\dfrac{1}{\theta \sqrt{2\pi t}}\exp {\left\{ -\frac{1}{2}\left( \dfrac{w-\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) ^2\right\} }dw\\&\quad =\left[ -\dfrac{\theta \sqrt{t}}{\sqrt{2\pi }} \exp {\left\{ -\frac{1}{2}\left( \dfrac{w-(\frac{1-k_2}{2}+\alpha )\theta ^2 t}{\theta \sqrt{t}}\right) ^2 \right\} }\right] _{\infty }^{\log {\frac{y}{b}}} -\left( \dfrac{1-k_2}{2}+\alpha \right) \theta ^2 t \\&\qquad \times {\mathcal {N}}\left( \frac{-\log {\dfrac{y}{b}}+\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) \\&\quad =-\theta \sqrt{t}\cdot \mathbf{n}\left( \frac{-\log {\dfrac{y}{b}}+\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) \\&\qquad -\left( \dfrac{1-k_2}{2}+\alpha \right) \theta ^2 t \cdot {\mathcal {N}}\left( \frac{-\log {\dfrac{y}{b}}+\left( \frac{1-k_2}{2}+\alpha \right) \theta ^2 t}{\theta \sqrt{t}}\right) . \end{aligned}\end{aligned}$$
(5.7)

Therefore, by (5.5), (5.6), and (5.7), we obtain the desired result. \(\square\)

B Proof of Theorem 1

We will prove Theorem 1 in the following steps.

(Step 1) For given \(x>\int _t^T \gamma _s^t R(s)ds\), there exists a unique \(y^*\) such that

$$\begin{aligned} x= -\dfrac{\partial {\widetilde{V}}}{\partial y}(t,y^*). \end{aligned}$$

Proof of (Step 1). By Feynman-Kac formula, \({\widetilde{V}}(t,y)\) satisfies the following PDE:

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} &{}\left( \dfrac{\partial }{\partial t} + {\mathcal {L}} \right) {\widetilde{V}}(t,y) + {\widetilde{u}}(t,y) = 0, \\ &{}{\widetilde{V}}(T,y) = 0. \end{array}\right. } \end{aligned} \end{aligned}$$
(6.1)

Let us denote

$$\begin{aligned} h(t,y) \equiv -\dfrac{\partial {\widetilde{V}}}{\partial y}(t,y). \end{aligned}$$

By differentiating the PDE (6.1) with respect to y, it is easy to confirm that h(ty) is the solution to the following PDE:

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} &{}\left( \dfrac{\partial }{\partial t} + {{\mathcal {L}}_1}\right) h(t,y) + I(y - (y - {\widetilde{y}}(t))^{+}) = 0 \\ &{}h(T,y) = 0, \end{array}\right. } \end{aligned} \end{aligned}$$
(6.2)

where the partial differential operator \({{\mathcal {L}}_1}\) is given by

$$\begin{aligned} \begin{aligned} {{\mathcal {L}}_1} \triangleq \dfrac{1}{2}\theta ^2 y^2 \dfrac{\partial ^2}{\partial y^2}+\left( \beta - r+\theta ^2\right) y\dfrac{\partial }{\partial y} - r {\mathcal {I}}. \end{aligned} \end{aligned}$$
(6.3)

For the operator \({{\mathcal {L}}_1}\), applying Theorem 4 in Appendix A, h(ty) is represented by

$$\begin{aligned}\begin{aligned} h(t,y)&=\int _{t}^{T}\int _{0}^{{\widetilde{y}}(\eta )}I(v)\cdot \widetilde{{\mathcal {G}}}(\eta -t,\dfrac{y}{v})\dfrac{1}{v}dvd\eta +\int _{t}^{T}\int _{{\widetilde{y}}(\eta )}^{\infty }R(\eta )\cdot \widetilde{{\mathcal {G}}}(\eta -t,\dfrac{y}{v})\dfrac{1}{v}dvd\eta \\ \end{aligned} \end{aligned}$$

where

$$\begin{aligned}\begin{aligned} \widetilde{{\mathcal {G}}}(t,y) = e^{-\frac{1}{2}\left\{ \left( \frac{1-{\widetilde{k}}_2}{2}\right) ^2+{\widetilde{k}}_1\right\} \theta ^2t} \dfrac{y^{\frac{1-{\widetilde{k}}_2}{2}}}{\theta \sqrt{2\pi t}} \exp {\left\{ -\dfrac{1}{2}\dfrac{(\log {y})^2}{\theta ^2 t}\right\} } \end{aligned} \end{aligned}$$

and \({\widetilde{k}}_1 = {2r}/{\theta ^2}\), \({\widetilde{k}}_2 = {2(\beta -r+\theta ^2)}/{\theta ^2}\). Indeed we see that

$$\begin{aligned}\begin{aligned} \widetilde{{\mathcal {G}}}(t,y) = \dfrac{1}{y}{\mathcal {G}}(t,y), \end{aligned} \end{aligned}$$

where \({\mathcal {G}}(t,y)\) is defined in (5.2). Therefore, by Lemma 1 in Appendix A, h(ty) is given by

$$\begin{aligned} \begin{aligned} h(t,y)=&\dfrac{1}{y}\int _{0}^{\tau }\int _{0}^{{\widetilde{y}}(\xi +t)}vI(v)\cdot {{\mathcal {G}}}(\xi ,\dfrac{y}{v})\dfrac{1}{v}dvd\xi \\&+\dfrac{1}{y} \int _{t}^{T}\int _{{\widetilde{y}}(\eta )}^{\infty }R(\eta )v\cdot {{\mathcal {G}}}(\eta -t,\dfrac{y}{v})\dfrac{1}{v}dvd\eta \\ =&\dfrac{1}{y}\int _{0}^{\tau }\int _{0}^{{\widetilde{y}}(\xi +t)}vI(v)\cdot {{\mathcal {G}}}(\xi ,\dfrac{y}{v})\dfrac{1}{v}dvd\xi \\&+ \int _{0}^{\tau }R(\xi +t)\cdot e^{-r\xi } {\mathcal {N}}\left( d^{+}(\xi ,\dfrac{y}{{\widetilde{y}}(\xi +t)})\right) d\xi , \end{aligned} \end{aligned}$$
(6.4)

where \(\xi =\eta -t\) and \(\tau =T-t\).

Since \({\mathcal {L}}_1\left( y\dfrac{\partial }{\partial y}\right) =y\dfrac{\partial }{\partial y} {\mathcal {L}}_1\), we deduce that \(y\dfrac{\partial h}{\partial y}\) satisfies the following PDE:

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} &{}\left( \dfrac{\partial }{\partial t} + {{\mathcal {L}}_1}\right) \left( y\dfrac{\partial h}{\partial y}\right) + \dfrac{y}{u''(I(y))}{} \mathbf{1}_{\{y\le {\tilde{y}}(t)\}} = 0, \\ &{}\left( y\dfrac{\partial h}{\partial y}\right) (T,y) = 0. \end{array}\right. } \end{aligned} \end{aligned}$$
(6.5)

Similarly, we can obtain

$$\begin{aligned} \begin{aligned} y\dfrac{\partial h}{\partial y}(t,y) = \int _{0}^{\tau }\int _{0}^{{\widetilde{y}}(\xi +t)}\underbrace{\dfrac{v}{u''(I(v))}}_{<0}\cdot \underbrace{{{\mathcal {G}}}(\xi ,\dfrac{y}{v})\dfrac{1}{v}}_{>0}dvd\xi <0. \end{aligned} \end{aligned}$$
(6.6)

This implies that the dual value function \({\widetilde{V}}(t,y)\) is strictly convex in \(y>0\).

Also, from the definition of \({\mathcal {G}}(t,y)\) in (3.8), we see that, for any \(v>0\),

$$\begin{aligned} \lim _{y\rightarrow 0+}\dfrac{{\mathcal {G}}(t,\frac{y}{v})}{y}&=e^{-\frac{1}{2}\left\{ \left( \frac{1-k_2}{2}\right) ^2+k_1\right\} \theta ^2 t}\cdot \dfrac{1}{v \theta \sqrt{2\pi t}}\lim _{y\rightarrow 0+}\dfrac{\left( \frac{y}{v}\right) ^{\frac{-1-k_2}{2}}}{\exp {\left\{ \dfrac{1}{2}\dfrac{(\log {\frac{y}{v}})^2}{\theta ^2 t}\right\} }}=+\infty ,\\ \lim _{y\rightarrow +\infty }\dfrac{{\mathcal {G}}(t,\frac{y}{v})}{y}&=e^{-\frac{1}{2}\left\{ \left( \frac{1-k_2}{2}\right) ^2+k_1\right\} \theta ^2 t}\cdot \dfrac{1}{v \theta \sqrt{2\pi t}}\lim _{y\rightarrow +\infty }\dfrac{\left( \frac{y}{v}\right) ^{\frac{-1-k_2}{2}}}{\exp {\left\{ \dfrac{1}{2}\dfrac{(\log {\frac{y}{v}})^2}{\theta ^2 t}\right\} }}=0 \end{aligned}$$

under Assumption 2. Thus we obtain

$$\begin{aligned} \lim _{y\rightarrow 0+}h(t,y)&=+\infty ,\\ \lim _{y\rightarrow +\infty }h(t,y)&=\int _{0}^{\tau }R(t+\xi )\cdot e^{-r\xi } d\xi >0. \end{aligned}$$

Hence, we can conclude that there exists a unique \(y^*\) such that

$$\begin{aligned} x= -\dfrac{\partial {\widetilde{V}}}{\partial y}(t,y^*). \end{aligned}$$

(Step 2) The following duality relationship is established:

$$\begin{aligned} V(t,x) = \inf _{y >0} \left( {\widetilde{V}}(t,y)+ y x \right) . \end{aligned}$$
(6.7)

Moreover, for \(s\in [t,T]\), the optimal wealth \(X_s^*\), the optimal consumption \(c_s^*\) and the optimal portfolio \(\pi _s^*\) at time s are given by

$$\begin{aligned} X_s^*=-\dfrac{\partial {\widetilde{V}}}{\partial }(s,Y_s^*),\;\;c_s^* = I(Y_s^* - (Y_s^* - {\tilde{y}}(s))^+)\;\;\;\text{ and }\;\;\;\pi _s^* = \dfrac{\theta }{\sigma }Y_s^* \dfrac{\partial ^2 {\widetilde{V}}}{\partial y^2}(s, Y_s^*) \end{aligned}$$
(6.8)

with \(Y_s^* = y^* e^{\beta (s-t)}H_s^t\).

Proof of (Step 2). For \(s\in [t,T]\), let us denote \(\mathcal {X}_s \equiv h(s,Y_s^*)\) with \(Y_s^* = y^* e^{\beta (s-t)}H_s^t\). By applying Itô’s formula to \(\mathcal {X}_s\), we obtain that

$$\begin{aligned} \begin{aligned} d\mathcal {X}_s =&\dfrac{\partial h}{\partial s}(s,Y_s^*)ds + \dfrac{\partial h}{\partial y}(s,Y_s^*) dY_s^* +\dfrac{1}{2}\dfrac{\partial ^2 h}{\partial y^2}(dY_s^*)^2\\ =&\left( \dfrac{\partial h}{\partial s}+\dfrac{\theta ^2}{2}(Y_s^*)^2\dfrac{\partial ^2 h}{\partial y^2}\right. \\&\left. +(\beta -r+\theta ^2)Y_s^*\dfrac{\partial h}{\partial y}\right) ds - \theta Y_s^*\dfrac{\partial h}{\partial y}(s,Y_s^*)(dB_s + \theta ds)\\ =&\underbrace{\left( \dfrac{\partial h}{\partial s}+\dfrac{\theta ^2}{2}(Y_s^*)^2\dfrac{\partial ^2 h}{\partial y^2} +(\beta -r+\theta ^2)Y_s^*\dfrac{\partial h}{\partial y}-r h(s,Y_s) +I(Y_s^*-(Y_s^*-{\tilde{y}}(s))^+)\right) }_{=0}ds\\&+\left( r h(s,Y_s)-I(Y_s^*-(Y_s^*-{\tilde{y}}(s))^+)+(\mu -r)\left( -\dfrac{\theta }{\sigma }\dfrac{\partial ^2 h}{\partial y^2}\right) \right) ds\\&- \theta Y_s^*\dfrac{\partial h}{\partial y}(s,Y_s^*)dB_s\\ =&(r\mathcal {X}_s -c_s^* +(\mu -r)\pi _s^*)ds + \sigma \pi _s^* dB_s, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} c_s^* = I(Y_s^* - (Y_s^* - {\tilde{y}}(s))^+)\;\;\;\text{ and }\;\;\;\pi _s^* = \dfrac{\theta }{\sigma }Y_s^* \dfrac{\partial ^2 {\widetilde{V}}}{\partial y^2}(s, Y_s^*). \end{aligned}$$

Since \(\mathcal {X}_t = h(t,y) = x\), the uniqueness of the solution to SDE implies that

$$\begin{aligned} X_s^*= \mathcal {X}_s \;\;\text{ for }\;\;s\in [t,T]. \end{aligned}$$

It is not difficult to show that for \(s\in [t,T]\),

$$\begin{aligned} \int _s^T \theta Y_u^*\dfrac{\partial h}{\partial y}(u,Y_u^*)dB_u \end{aligned}$$

is a martingale. Thus, we can derive that for all \(s\in [t,T]\),

$$\begin{aligned} \begin{aligned} X_s^* = {\mathbb {E}}_s\left[ \int _s^T H_u^s c_u^* du\right] . \end{aligned} \end{aligned}$$
(6.9)

Especially,

$$\begin{aligned} \begin{aligned} x = {\mathbb {E}}_t\left[ \int _t^T H_s^t c_s^* ds\right] . \end{aligned} \end{aligned}$$
(6.10)

This implies that

$$\begin{aligned} \begin{aligned} V(t,x)\ge&~{\mathbb {E}}_t\left[ \int _t^T e^{-\beta (s-t)}u(c_s^*)ds\right] \\ =&~{\mathbb {E}}_t\left[ \int _t^T e^{-\beta (s-t)}u(c_s^*)ds\right] +y^*\left( x-{\mathbb {E}}_t\left[ \int _t^T H_s^t c_s^* ds\right] \right) \\ =&~{\mathbb {E}}_t\left[ \int _t^T e^{-\beta (s-t)}{\tilde{u}}(s,Y_s^*)ds\right] +y^* x\\ =&~{\widetilde{V}}(t,y^*) + y^* x \\ \ge&~\inf _{y >0} [{\widetilde{V}}(t,y)+yx]. \end{aligned} \end{aligned}$$
(6.11)

From (3.3), we conclude that

$$\begin{aligned} V(t,x) = {\widetilde{V}}(t,y^*) + y^* x. \end{aligned}$$
(6.12)

Thus, the strategies \(X_s^*\), \(c_s^*\) and \(\pi _s^*\) are optimal.

C Proof of Theorem 2

Proof

By Theorem 2 and Lemma 1 in Appendix A, the value function V(tx) is given by

$$\begin{aligned}\begin{aligned} V(t,x)&=\dfrac{(y^{*})^{-\frac{1-\gamma }{\gamma }}}{1-\gamma }\int _{0}^{\tau }e^{-K\xi }{\mathcal {N}}\left( -d^{-}_{\delta }(\xi ,\frac{y^{*}}{R(t+\xi )^{-\gamma }}) \right) d\xi \\&\;\;+ \int _{0}^{\tau }\dfrac{{R}(t+\xi )^{1-\gamma }}{1-\gamma }\cdot e^{-\beta \xi }{\mathcal {N}}\left( d^{-}(\xi ,\frac{y^{*}}{R(t+\xi )^{-\gamma }})\right) d\xi , \end{aligned}\end{aligned}$$

where \(y^{*}\) is the solution to the following algebraic equation:

$$\begin{aligned} \begin{aligned} x=&(y^{*})^{-\frac{1}{\gamma }}\int _{0}^{\tau }e^{-K\xi }{\mathcal {N}}\left( -d^{-}_{\delta }(\xi ,\frac{y^{*}}{R(t+\xi )^{-\gamma }})\right) d\xi \\&+ \int _{0}^{\tau }R(t+\xi )e^{-r\xi }{\mathcal {N}}\left( d^{+}(\xi ,\frac{y^{*}}{R(t+\xi )^{-\gamma }})\right) d\xi . \end{aligned} \end{aligned}$$
(6.13)

We can rewrite (6.13) as

$$\begin{aligned} \begin{aligned}&x-\int _{0}^{\tau }R(t+\xi )e^{-r\xi }d\xi \\&\quad =(y^{*})^{-\frac{1}{\gamma }}\int _{0}^{\tau }e^{-K\xi }{\mathcal {N}}\left( -d^{-}_{\delta }(\xi ,\frac{y^{*}}{R(t+\xi )^{-\gamma }})\right) d\xi \\&\qquad -\int _{0}^{\tau }R(t+\xi )e^{-r\xi }{\mathcal {N}}\left( -d^{+}(\xi ,\frac{y^{*}}{R(t+\xi )^{-\gamma }})\right) d\xi . \end{aligned} \end{aligned}$$
(6.14)

Here

$$\begin{aligned} \int _{0}^{\tau }R(t+\xi )e^{-r\xi }d\xi \end{aligned}$$
(6.15)

can be considered as the annuity value of consumption if the agent keeps the rate of consumption larger than R(t) for t.

Similar to Theorem 1, the optimal consumption and portfolio strategies \((c^{*},\pi ^{*})\) are given by

$$\begin{aligned}\begin{aligned} c^{*}_{t}=I\left( y^{{*}}- (y^{{*}}- R(t)^{-\gamma })^{+}\right) \end{aligned}\end{aligned}$$

and

$$\begin{aligned}\begin{aligned} \pi ^{*}_{t} =&\frac{\theta }{\sigma }\left[ \dfrac{1}{\gamma }(y^{*})^{-\frac{1}{\gamma }} \int _{0}^{\tau }e^{-K\xi }{\mathcal {N}}\left( -d^{-}_{\delta }(\xi ,\dfrac{y^{*}}{R(t+\xi )^{-\gamma }})\right) d\xi \right. ]\\&+\frac{1}{\sqrt{2\pi }} (y^{*})^{-\frac{1}{\gamma }}\int _{0}^{\tau }\exp {\left\{ -K\xi -\dfrac{1}{2}\left( d^{-}_{\delta }(\xi ,\dfrac{y^{*}}{R(t+\xi )^{-\gamma }})\right) ^2 \right\} }\dfrac{1}{\theta \sqrt{\xi }}d\xi \\&\left. -\frac{1}{\sqrt{2\pi }}\int _{0}^{\tau }R(t+\xi )\exp {\left\{ -r\xi -\dfrac{1}{2}\left( d^{+}(\xi ,\dfrac{y^{*}}{R(t+\xi )^{-\gamma }})\right) ^2 \right\} }\dfrac{1}{\theta \sqrt{\xi }}d\xi \right] \\ =&\frac{\theta }{\sigma \gamma }(y^{*})^{-\frac{1}{\gamma }} \int _{0}^{\tau }e^{-K\xi }{\mathcal {N}}\left( -d^{-}_{\delta }(\xi ,\dfrac{y^{*}}{R(t+\xi )^{-\gamma }})\right) d\xi . \end{aligned} \end{aligned}$$

\(\square\)

D Proof of Theorem 3

Proof

Since \(u(I(y))=-\dfrac{y}{\gamma }\), by Theorem 2 and Lemma 1 in A , the value function V(tx) is given by

$$\begin{aligned}\begin{aligned} V(t,x)=&-\dfrac{y^{*}}{\gamma }\int _{0}^{\tau }e^{-r\xi }{\mathcal {N}}\left( -d^{+}(\xi ,\dfrac{y^{*}}{{\widetilde{y}}(t+\xi )})\right) d\xi \\&- \int _{0}^{\tau }\dfrac{e^{-\gamma R(t+\xi )}}{\gamma }e^{-\beta \xi }{\mathcal {N}}\left( d^{-}(\xi ,\dfrac{y^{*}}{{\widetilde{y}}(t+\xi )})\right) d\xi \end{aligned} \end{aligned}$$

where \(y^{*}\) is the solution to the following algebraic equation:

$$\begin{aligned} \begin{aligned} x=&\dfrac{1}{\gamma }\int _{0}^{\tau }\theta \sqrt{\xi }e^{-r\xi }\mathbf{n}\left( -d^{+}(\xi ,\dfrac{y^{*}}{{\widetilde{y}}(t+\xi )})\right) d\xi \\&+\int _{0}^{\tau }R(t+\xi )e^{-r\xi }{\mathcal {N}}\left( d^{+}(\xi ,\dfrac{y^{*}}{{\widetilde{y}}(t+\xi )})\right) d\xi \\&-\dfrac{1}{\gamma }\int _{0}^{\tau }\left( \log {y^{*}}+\left( \dfrac{1+k_2}{2}\right) \theta ^2\xi \right) e^{-r\xi }{\mathcal {N}}\left( -d^{+}(\xi ,\dfrac{y^{*}}{{\widetilde{y}}(t+\xi )})\right) d\xi . \end{aligned} \end{aligned}$$
(6.16)

Since \(\pi ^{*}_t=-\dfrac{\theta }{\sigma }y^*\dfrac{\partial x }{\partial y}(t,y^*)\), the optimal portfolio is given by

$$\begin{aligned}\begin{aligned} \pi ^{*}_t = \dfrac{\theta }{\sigma \gamma }\int _{0}^{\tau }e^{-r\xi }{\mathcal {N}}\left( -d^{+}(\xi ,\dfrac{y^*}{{\widetilde{y}}(t+\xi )})\right) d\xi . \end{aligned} \end{aligned}$$

\(\square\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, J., Kang, M. & Shin, Y.H. Finite time-horizon optimal investment and consumption with time-varying subsistence consumption constraints. Japan J. Indust. Appl. Math. 38, 353–377 (2021). https://doi.org/10.1007/s13160-020-00440-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-020-00440-0

Keywords

Mathematics Subject Classification

Navigation