First, we prove the case of
\(n=0\). Substituting (
38) for
\(n=0\) and
\(\chi =\theta ^{1}\), we obtain
$$\begin{aligned} \left\langle \frac{\theta ^{1}-\theta ^0}{\tau _{0}},\theta ^{1}\right\rangle +B(\theta ^{1},\theta ^{1})\le & {} \left\langle f(u_{h}^{0})-f(u^0),\theta ^1\right\rangle \\&-\, \left\langle f(u(t_{1}))-f(u^0),\theta ^1\right\rangle \\&-\,\left\langle \partial _{\tau _0} u(t_{1})-u_{t}(t_{1}),\theta ^1\right\rangle \\&-\,\left\langle \frac{\rho ^{1}-\rho ^0}{\tau _{0}},\theta ^{1}\right\rangle . \end{aligned}$$
Because
\(\theta ^0=0\), we apply (
37b) to get
$$\begin{aligned} \frac{1}{\tau _0}|||\theta ^{1}|||^2&\le M |||\rho ^0|||\cdot |||\theta ^1||| +M\tau _0\Vert u_t\Vert _{L^\infty (Q_T)}|||\theta ^1|||\\&{ }\quad +\tau _0\Vert u_{tt}\Vert _{L^\infty (Q_T)}|||\theta ^1||| +|||\partial _{\tau _0}\rho ^{1}|||\cdot |||\theta ^1|||\\&\le C(\tau _0+h^2)|||\theta ^1|||. \end{aligned}$$
Repeatedly using
\(\theta ^0=0\), we obtain
$$\begin{aligned} |||\partial _{\tau _0}\theta ^1|||\le C(\tau _0+h^2). \end{aligned}$$
(44)
Next we assume
\(n\ge 0\) and
\(t_{n+2}\le T\). Consequently, from (
38), we derive
$$\begin{aligned}&\left\langle \partial _{\tau _{n+1}}\theta ^{n+2}-\partial _{\tau _n}\theta ^{n+1},\chi \right\rangle +B(\theta ^{n+2}-\theta ^{n+1},\chi ) \nonumber \\&\quad =\langle \underbrace{f(u_{h}^{n+1})-f(u(t_{n+1}))-f(u_{h}^{n})+f(u(t_{n}))}_{=J_1},\chi \rangle \nonumber \\&\qquad -\langle \underbrace{f(u(t_{n+2}))-f(u(t_{n+1}))-f(u(t_{n+1}))+f(u(t_{n}))}_{=J_2},\chi \rangle \nonumber \\&\qquad -\langle \underbrace{\partial _{\tau _{n+1}}u(t_{n+2})-u_{t}(t_{n+2}) -\partial _{\tau _{n}}u(t_{n+1}) + u_{t}(t_{n+1})}_{=J_3} ,\chi \rangle \nonumber \\&\qquad -\langle \underbrace{\partial _{\tau _{n+1}}\rho ^{n+2}-\partial _{\tau _{n}}\rho ^{n+1}}_{=J_4},\chi \rangle \end{aligned}$$
(45)
for any
\(\chi \in S_h\). Substituting this expression for
\(\chi =\partial _{\tau _{n+1}}\theta ^{n+2}\), we obtain
$$\begin{aligned}&|||\partial _{\tau _{n+1}}\theta ^{n+2}|||^2- |||\partial _{\tau _n}\theta ^{n+1}|||\cdot |||\partial _{\tau _{n+1}}\theta ^{n+2}||| \\&\quad \le |||\partial _{\tau _{n+1}}\theta ^{n+2}|||\sum _{j=1}^4|||J_j|||. \end{aligned}$$
Here, we accept the following estimates:
$$\begin{aligned} |||J_1|||&\le C\tau _n(1+\tau _n) |||\partial _{\tau _n}\theta ^{n+1}||| +C\tau _n(h^2+\tau _n+\tau _nh^2), \end{aligned}$$
(46a)
$$\begin{aligned} |||J_2|||,|||J_3|||&\le C\tau _{n+1}(\tau _{n+1}+\tau _{n})+ C|\tau _{n+1}-\tau _{n}|, \end{aligned}$$
(46b)
$$\begin{aligned} |||J_4|||&\le C (\tau _{n+1}+\tau _n)h^2. \end{aligned}$$
(46c)
In view of the quasi-uniformity of time partition (
23), we have
$$\begin{aligned} \tau _{n+1}=\tau _n\frac{\tau _{n+1}}{\tau _n}\le \gamma \tau _n. \end{aligned}$$
Summing up, we deduce
$$\begin{aligned} b_{n+1}-b_n\le C \tau _n b_n +C\tau _n\left( h^2+\tau +\frac{\delta }{\tau _{\min }}\right) , \end{aligned}$$
(47)
where
\(b_n=|||\partial _{\tau _n}\theta ^{n+1}|||\). Therefore,
$$\begin{aligned} b_{n}\le e^{CT}b_0+C(e^{CT}-1)\left( h^2+\tau +\frac{\delta }{\tau _{\min }}\right) , \end{aligned}$$
which, together with (
44), implies the desired inequality (
41b).
Estimation for\(J_1\). We apply Taylor’s theorem to obtain
$$\begin{aligned} J_1&=f'(s_{1})(u_{h}^{n+1}-u_{h}^{n})-f'(s_{2})(u(t_{n+1})-u(t_{n}))\\&= f'(s_{1})[(\theta ^{n+1}+\rho ^{n+1})-(\theta ^{n}+\rho ^{n})] \\&\quad +\frac{f'(s_{1})-f'(s_{2})}{s_{1}-s_{2}}(s_{1}-s_{2})(u(t_{n+1})-u(t_{n})), \end{aligned}$$
where
\(s_{1}=u_{h}^{n+1}-\mu _{1}(u_{h}^{n+1}-u_{h}^{n})\) and
\(s_{2}=u(t_{n+1})-\mu _{2}[u(t_{n+1})-u(t_{n})]\) for some
\(\mu _{1},\mu _2\in [0,1]\). In view of (
37a), (
37b), and (
41a), we find the following estimates
$$\begin{aligned} |||J_1|||&\le \tau _nM|||\partial _{\tau _n}\theta ^{n+1}||| +\tau _nM|||\partial _{\tau _n}\rho ^{n+1}|||\\&\quad +\, \left| \left| \left| \frac{f'(s_{1})-f'(s_{2})}{s_{1}-s_{2}}(s_{1}-s_{2})\right| \right| \right| \cdot \tau _n\Vert u_t\Vert _{L^\infty (Q_T)},\\&\le \tau _nM|||\partial _{\tau _n}\theta ^{n+1}||| +C\tau _n Mh^2\Vert u_{txx}\Vert _{L^\infty (Q_T)}\\&\quad +\, \left| \left| \left| \frac{f'(s_{1})-f'(s_{2})}{s_{1}-s_{2}}(s_{1}-s_{2})\right| \right| \right| \cdot \tau _n\Vert u_t\Vert _{L^\infty (Q_T)}, \end{aligned}$$
and
$$\begin{aligned}&\left| \left| \left| \displaystyle {\frac{f'(s_{1})-f'(s_{2})}{s_{1}-s_{2}}(s_{1}-s_{2})}\right| \right| \right|&\\&\quad \le M_{2}|||\theta ^{n+1}+\rho ^{n+1}-\mu _{1}(\theta ^{n+1}+\rho ^{n+1}-\theta ^{n}-\rho ^{n})\\&\qquad +\,(\mu _{2}-\mu _{1})(u(t_{n+1})-u(t_{n}))|||\\&\quad \le M_{2}\{|||\theta ^{n+1}|||+|||\rho ^{n+1}|||+ \tau _n|||\partial _{\tau _n}\theta ^{n+1}|||\\&\qquad +\,\tau _n|||\partial _{\tau _n}\rho ^{n+1}|||+\tau _n\Vert u_t\Vert _{L^\infty (Q_T)}\}&\\&\quad \le M_{2}\{C(h^2+\tau )+Ch^2\Vert u_{xx}\Vert _{L^\infty (Q_T)}+ \tau _n|||\partial _{\tau _n}\theta ^{n+1}||| \\&\qquad +\,C\tau _n h^2\Vert u_{txx}\Vert _{L^\infty (Q_T)}+\tau _n\Vert u_t\Vert _{L^\infty (Q_T)}\}. \end{aligned}$$
Estimation for\(J_2\). We begin with
$$\begin{aligned} J_2&=f'(s_{3})(u(t_{n+2})-u(t_{n+1}))-f'(s_{4})(u(t_{n+1})-u(t_{n}))\\&=\frac{f'(s_{3})-f'(s_{4})}{s_{3}-s_{4}}(s_{3}-s_{4})\tau _{n+1}u_{t}(\eta _{1})+f'(s_{4})(\tau _{n+1}u_{t}(\eta _{1})-\tau _{n}u_{t}(\eta _{2}))\\&=\frac{f'(s_{3})-f'(s_{4})}{s_{3}-s_{4}}(s_{3}-s_{4})\tau _{n+1}u_{t}(\eta _{1}) \\&\quad +\,f'(s_{4})\tau _{n+1}(u_{t}(\eta _{1})-u_{t}(\eta _{2})) +f'(s_{4})(\tau _{n+1}-\tau _n)u_{t}(\eta _{2}), \end{aligned}$$
where
\(s_{3}=u(t_{n+1})+\mu _{3}(u(t_{n+2})-u(t_{n+1}))\) and
\(s_{4}=u(t_{n+1})+\mu _{4}(u(t_{n})-u(t_{n+1}))\) for some
\(\mu _3,\mu _4\in [0,1]\),
\(\eta _1\in [t_{n+1},t_{n+2}]\), and
\(\eta _2\in [t_{n},t_{n+1}]\). Next, we obtain the following estimate:
$$\begin{aligned} |||J_2|||&\le \tau _{n+1} \left| \left| \left| \frac{f'(s_{3})-f'(s_{4})}{s_{3}-s_{4}}(s_{3}-s_{4})\right| \right| \right| \cdot \Vert u_{t}\Vert _{L^\infty (Q_T)} \\&\quad +\, M_1\tau _{n+1}(\tau _{n+1}+\tau _{n})\Vert u_{tt}\Vert _{L^\infty (Q_T)} +M_1|\tau _{n+1}-\tau _n|\cdot \Vert u_t\Vert _{L^\infty (Q_T)}; \end{aligned}$$
$$\begin{aligned} \left| \left| \left| \frac{f'(s_{3})-f'(s_{4})}{s_{3}-s_{4}}(s_{3}-s_{4})\right| \right| \right|&\le CM_{2}(\tau _{n+1}+\tau _n)\Vert u_t\Vert _{L^\infty (Q_T)}. \end{aligned}$$
Estimation for\(J_3\). We express
\(J_3\) as
$$\begin{aligned} J_3&= \frac{\tau _{n+1}u_t(t_{n+2})-\frac{1}{2}\tau _{n+1}^2u_{tt}(s_5)}{\tau _{n+1}} -u_{t}(t_{n+2}) \\&\quad -\,\left( \frac{\tau _{n}u_t(t_{n+1})-\frac{1}{2}\tau _{n}^2u_{tt}(s_6)}{\tau _{n}} -u_{t}(t_{n+1})\right) \\&= -\frac{1}{2}\tau _{n+1}u_{tt}(s_5) +\frac{1}{2}\tau _{n}u_{tt}(s_6)\\&= \frac{1}{2}\tau _{n+1}(u_{tt}(s_6)-u_{tt}(s_5))- \frac{1}{2}(\tau _{n+1}-\tau _{n})u_{tt}(s_6)\\&=\frac{1}{2} \tau _{n+1}u_{ttt}(s_{7})(s_{5}-s_{6})-\frac{1}{2} (\tau _{n+1}-\tau _{n})u_{tt}(s_{6}) \end{aligned}$$
for some
\(s_5\in [t_{n+1},t_{n+2}]\),
\(s_6\in [t_{n},t_{n+1}]\) and
\(s_7\in [s_6,s_5]\subset [t_{n},t_{n+2}]\). Therefore,
$$\begin{aligned} |||J_3|||\le \frac{1}{2}\tau _{n+1}(\tau _{n+1}+\tau _{n})\Vert u_{ttt}\Vert _{L^\infty (Q_T)}+ \frac{1}{2}|\tau _{n+1}-\tau _{n}|\cdot \Vert u_{tt}\Vert _{L^\infty (Q_T)}. \end{aligned}$$
Estimation for\(J_4\). For some
\(s_8\in [t_{n+1},t_{n+2}]\),
\(s_9\in [t_{n},t_{n+1}]\), and
\(s_{10}\in [s_9,s_8]\), we obtain the expression
$$\begin{aligned} \frac{\rho ^{n+2}-\rho ^{n+1}}{\tau _{n+1}}-\frac{\rho ^{n+1}-\rho ^{n}}{\tau _{n}} =\rho _{t}(s_{8})-\rho _{t}(s_{9}) =(s_8-s_9)\rho _{tt}(s_{10}) \end{aligned}$$
Therefore, using (
35),
$$\begin{aligned} |||J_4|||\le C (\tau _{n+1}+\tau _n)h^2\Vert u_{ttxx}\Vert _{L^\infty (Q_T)}. \end{aligned}$$
\(\square \)