Skip to main content
Log in

The fictitious domain method for the Stokes problem with Neumann/free-traction boundary condition

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider the fictitious domain method for the Stokes problem with Neumann/free-traction boundary condition. For the penalty method, we obtain the error estimate of order \(O(\epsilon )\), where \(\epsilon \) is the penalty parameter. Next, we apply the finite element method to the penalty problem using the P1/P1 element with stabilization, and obtain the error estimate of discretization. The theoretical results are verified by the numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angot, P.: A unified fictitious domain model for general embedded boundary conditions. C. R. Acad. Sci. Paris Ser. I. 341, 683–688 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angot, P.: A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions. C. R. Acad. Paris Ser. Math. 348, 697–702 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angot, P., Bruneau, C.-H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math 81, 497–520 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G.: Basic Error Estimates for Elliptic Problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Volume II: Finite Element Methods (Part 1). North-Holland, Amsterdam (1991)

    Google Scholar 

  6. Clément, P.: Approximation by finite element functions using local regularization. R. A. I. R. O. Anal. Numer. 9(R2), 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  7. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  8. Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D.: A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 25, 755–794 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Comput. Phys. 169, 363–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glowinski, R., Pan, T.W., Wells Jr., R.O., Zhou, X.: Wavelet and finite element solutions for the Neumann problem using fictitious domains. J. Comput. Phys. 126, 40–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Glowinski, R., Pan, T.-W., Périaux, J.: A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving rigid bodies: (I) case where the rigid body motions are known a priori. C. R. Math. Acad. Sci. Paris 324, 361–369 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kashiwabara, T., Oikawa, I., Zhou, G.: Penalty method with P1/P1 finite element approximation for the Stokes equations under slip boundary condition. Numer. Math. 134, 705–740 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sci. Comput. 61, 604–628 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maury, B.: Numerical analysis of a finite element/volume penalty method. SIAM J. Numer. Anal 47, 1126–1148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mignot, A.L.: Méthodes d’approximation des solutions des certains problèmes aux limites linéaires. i. Rend. Sem. Mat. Univ. Padova 40, 1–38 (1968)

    MathSciNet  MATH  Google Scholar 

  16. Ramière, I., Angot, P., Belliard, M.: A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput. Methods Appl. Mech. Eng. 196, 766–781 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ramière, I., Angot, P., Belliard, Michel: A general fictitious domain method with immersed jumps and multilevel nested structured meshes. J. Comput. Phys. 225, 1347–1387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saito, N.: On the Stokes equation with the leak and slip boundary conditions of friction type: regularity of solutions. Publ. RIMS Kyoto Univ. 40, 345–383 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shibata, Y., Shimizu, S.: On a resolvent estimate for the Stokes system with Neumann boundary condition. Differ. Integral Equ. 16, 385–426 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Tabata, M.: Uniform solvability of finite element solutions in approximate domains. Japan J. Ind. Appl. Math. 18, 567–585 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  22. Zhang, S.: Analysis of finite element domain embedding methods for curved domains using uniform grids. SIAM J. Numer. Anal. 46, 2843–2866 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, G.: The fictitious domain method with penalty for the parabolic problem in moving-boundary domain: the error estimate of penalty and the finite element approximation. Appl. Numer. Math. 115, 42–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou, G., Kashiwabara, T., Oikawa, I.: Penalty method for the stationary Navier-Stokes problems under the slip boundary condition. J. Sci. Comput. 68, 339–374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, G., Saito, N.: Analysis of the fictitious domain method with penalty for elliptic problems. Japan J. Ind. Appl. Math. 31, 57–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, G., Saito, N.: Analysis of the fictitious domain method with an \({L}^2\)-penalty for elliptic problems. Numer. Funct. Anal. Optim. 36, 501–527 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to N. Saito who brought my attention to the present subject and encouraged me through valuable discussions. A part of this work is supported by Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST), Japan, and by Platform for Dynamic Approaches to Living System from the Ministry of Education, Culture, Sports, Science and Technology, Japan. This work was also supported by JSPS A3 Foresight Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanyu Zhou.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G. The fictitious domain method for the Stokes problem with Neumann/free-traction boundary condition. Japan J. Indust. Appl. Math. 34, 585–610 (2017). https://doi.org/10.1007/s13160-017-0255-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0255-y

Keywords

Mathematics Subject Classification

Navigation