Note on time bounds of two-phase algorithms for L-convex function minimization

Original Paper Area 3


We analyze minimization algorithms, called the two-phase algorithms, for L\(^{\natural }\)-convex functions in discrete convex analysis and derive tight bounds for the number of iterations.


Discrete convex analysis Iteration auction Discrete optimization Analysis of algorithm 

Mathematics Subject Classification

90C27 68Q25 


  1. 1.
    Andersson, T., Erlanson, A.: Multi-item Vickrey-English-Dutch auctions. Games Econ. Behav. 81, 116–129 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ausubel, L.M.: An efficient dynamic auction for heterogeneous commodities. Amer. Econ. Rev. 96, 602–629 (2006)CrossRefGoogle Scholar
  3. 3.
    Blumrosen, L., Nisan, N.: Combinatorial auction. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.) Algorithm. Game Theory, pp. 267–299. Cambridge Univ. Press, Cambridge (2007)CrossRefGoogle Scholar
  4. 4.
    Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial auctions. MIT Press, Cambridge (2006)MATHGoogle Scholar
  5. 5.
    Demange, G., Gale, D., Sotomayor, M.: Multi-item auctions. J. Polit. Econ. 94, 863–872 (1986)CrossRefGoogle Scholar
  6. 6.
    Gul, F., Stacchetti, E.: The English auction with differentiated commodities. J. Econom. Theory 92, 66–95 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kelso Jr., A.S., Crawford, V.P.: Job matching, coalition formation, and gross substitutes. Econometrica 50, 1483–1504 (1982)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kolmogorov, V., Shioura, A.: New algorithms for convex cost tension problem with application to computer vision. Discrete Optim. 6, 378–393 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Mishra, D., Parkes, D.C.: Multi-item Vickrey-Dutch auctions. Games Econ. Behav. 66, 326–347 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Murota, K.: Discrete Convex Anal. SIAM, Philadelphia (2003)CrossRefMATHGoogle Scholar
  11. 11.
    Murota, K.: Discrete convex analysis: a tool for economics and game theory. J. Mech. Inst. Design 1, 151–273 (2016)Google Scholar
  12. 12.
    Murota, K., Shioura, A.: Exact bounds for steepest descent algorithms of L-convex function minimization. Oper. Res. Lett. 42, 361–366 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Murota, K., Shioura, A., Yang, Z.: Computing a Walrasian equilibrium in iterative auctions with multiple differentiated items. Extended abstract version In: Cai, L., Cheng, S.-W., Lam, T.W. (eds.) Proceedings of the 24th International Symposium on Algorithms and Computation (ISAAC 2013), LNCS 8283, pp. 468–478. Springer, Berlin (2013); Full paper version in: Technical Report METR 2013-10, University of Tokyo (2013)Google Scholar
  14. 14.
    Murota, K., Shioura, A., Yang, Z.: Time bounds for iterative auctions: a unified approach by discrete convex analysis. Discrete Optim. 19, 36–62 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shioura, A.: Algorithms for L-convex function minimization: connection between discrete convex analysis and other research fields. J. Oper. Res. Soc. Japan 60 (2017) (to appear) Google Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan 2017

Authors and Affiliations

  1. 1.School of Business AdministrationTokyo Metropolitan UniversityTokyoJapan
  2. 2.Department of Industrial Engineering and EconomicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations