Advertisement

An optimal three-point eighth-order iterative method without memory for solving nonlinear equations with its dynamics

  • Gunar Matthies
  • Mehdi Salimi
  • Somayeh Sharifi
  • Juan Luis Varona
Original Paper Area 2

Abstract

We present a three-point iterative method without memory for solving nonlinear equations in one variable. The proposed method provides convergence order eight with four function evaluations per iteration. Hence, it possesses a very high computational efficiency and supports Kung–Traub’s conjecture. The construction, the convergence analysis, and the numerical implementation of the method will be presented. Using several test problems, the proposed method will be compared with existing methods of convergence order eight concerning accuracy and basins of attraction. Furthermore, some measures are used to judge methods with respect to their performance in finding the basins of attraction.

Keywords

Optimal multi-point iterative methods Simple root Order of convergence Kung–Traub’s conjecture Basins of attraction 

Mathematics Subject Classification

65H05 37F10 

Notes

Acknowledgements

The research of the fourth author is supported by Grant MTM2015-65888-C4-4-P (MINECO/FEDER).

References

  1. 1.
    Amat, S., Busquier, S., Magreñán, Á.A.: Reducing chaos and bifurcations in Newton-type methods. Abstr. Appl. Anal. 2013, Art. ID 726701 (2013)Google Scholar
  2. 2.
    Babajee, D.K.R., Cordero, A., Soleymani, F., Torregrosa, J.R.: On improved three-step schemes with high efficiency index and their dynamics. Numer. Algorithms 65, 153–169 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 225, 105–112 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chun, C., Lee, M.Y.: A new optimal eighth-order family of iterative methods for the solution of nonlinear equations. Appl. Math. Comput. 223, 506–519 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ezquerro, J.A., Hernández, M.A.: An improvement of the region of accessibility of Chebyshev’s method from Newton’s method. Math. Comp. 78, 1613–1627 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ezquerro, J.A., Hernández, M.A.: An optimization of Chebyshev’s method. J. Complex. 25, 343–361 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ferrara, M., Sharifi, S., Salimi, M.: Computing multiple zeros by using a parameter in Newton–Secant method. SeMA J. (2016). doi: 10.1007/s40324-016-0074-0
  10. 10.
    Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: On some computational orders of convergence. Appl. Math. Lett. 23(4), 472–478 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gutiérrez, J.M., Magreñán, Á.A., Varona, J.L.: The “Gauss-Seidelization” of iterative methods for solving nonlinear equations in the complex plane. Appl. Math. Comput. 218, 2467–2479 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hernández-Paricio, L.J., Marañón-Grandes, M., Rivas-Rodríguez, M.T.: Plotting basins of end points of rational maps with Sage. Tbilisi Math. J. 5(2), 71–99 (2012)zbMATHGoogle Scholar
  13. 13.
    Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966)CrossRefzbMATHGoogle Scholar
  14. 14.
    King, R.F.: A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 634–651 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lotfi, T., Sharifi, S., Salimi, M., Siegmund, S.: A new class of three-point methods with optimal convergence order eight and its dynamics. Numer. Algorithms 68, 261–288 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Neta, B.: On a family of multipoint methods for nonlinear equations. Int. J. Comput. Math. 9, 353–361 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)MathSciNetGoogle Scholar
  19. 19.
    Ostrowski, A.M.: Solution of Equations and Systems of Equations, 2nd edn. Academic Press, New York (1966)zbMATHGoogle Scholar
  20. 20.
    Petković, M.S., Neta, B., Petković, L.D., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier/Academic Press, Amsterdam (2013)zbMATHGoogle Scholar
  21. 21.
    Prashanth, M., Gupta, D.K.: Semilocal convergence for Super-Halley’s method under \(\omega \)-differentiability condition. Jpn. J. Ind. Appl. Math. 32, 77–94 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Salimi, M., Lotfi, T., Sharifi, S., Siegmund, S.: Optimal Newton–Secant like methods without memory for solving nonlinear equations with its dynamics. Int. J. Comput. Math. (2016). doi: 10.1080/00207160.2016.1227800
  23. 23.
    Sharifi, S., Ferrara, M., Salimi, M., Siegmund, S.: New modification of Maheshwari method with optimal eighth order of convergence for solving nonlinear equations. Open Math. (formerly Cent. Eur. J. Math.) 14, 443–451 (2016)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sharifi, S., Salimi, M., Siegmund, S., Lotfi, T.: A new class of optimal four-point methods with convergence order \(16\) for solving nonlinear equations. Math. Comput. Simul. 119, 69–90 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sharifi, S., Siegmund, S., Salimi, M.: Solving nonlinear equations by a derivative-free form of the King’s family with memory. Calcolo 53, 201–215 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 54, 445–458 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Stewart, B.D.: Attractor Basins of Various Root-Finding Methods. M.S. thesis, Naval Postgraduate School, Monterey, CA (2001)Google Scholar
  28. 28.
    Thukral, R., Petković, M.S.: A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 233, 2278–2284 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, Englewood Cliffs (1964)zbMATHGoogle Scholar
  30. 30.
    Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intell. 24(1), 37–46 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wang, X., Liu, L.: New eighth-order iterative methods for solving nonlinear equations. J. Comput. Appl. Math. 234, 1611–1620 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan 2016

Authors and Affiliations

  1. 1.Institut für Numerische MathematikTechnische Universität DresdenDresdenGermany
  2. 2.Center for Dynamics, Department of MathematicsTechnische Universität DresdenDresdenGermany
  3. 3.Department of MathematicsUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.MEDAlics, Research Center at Università per Stranieri Dante AlighieriReggio CalabriaItaly
  5. 5.Departamento de Matemáticas y ComputaciónUniversidad de La RiojaLogroñoSpain

Personalised recommendations