On the circumradius condition for piecewise linear triangular elements

  • Kenta Kobayashi
  • Takuya TsuchiyaEmail author
Original Paper Area 2


We discuss the error analysis of linear interpolation on triangular elements. We claim that the circumradius condition is more essential than the well-known maximum angle condition for convergence of the finite element method, especially for the linear Lagrange finite element. Numerical experiments show that this condition is the best possible. We also point out that the circumradius condition is closely related to the definition of surface area.


Linear interpolation The circumradius condition The finite element method Schwarz’s example The definition of surface area 

Mathematics Subject Classification

65D05 65N30 26B15 



The first author is supported by Inamori Foundation and JSPS Grant-in-Aid for Young Scientists (B) 22740059. The second author is partially supported by JSPS Grant-in-Aid for Scientific Research (C) 22440139 and Grant-in-Aid for Scientific Research (B) 23340023. The authors thank the anonymous referee for valuable comments and for drawing the authors’ attention to Besicovitch’s paper [3].


  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003)zbMATHGoogle Scholar
  2. 2.
    Babuška, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13, 214–226 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Besicovitch, A.S.: On the definition of the area of a surface by means of inscribed polyhedra. J. London Math. Soc. 19, 139–141 (1944)Google Scholar
  4. 4.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cesari, K.: Surface Area. Princeton University Press, USA (1956)zbMATHGoogle Scholar
  6. 6.
    Ciarlet, P.G.: The Finite Element Methods for Elliptic Problems, North Holland, 1978, reprint by SIAM 2008Google Scholar
  7. 7.
    Fréchet, M.: Note on the area of a surface. In: Records of proceedings at meetings, Proc. London Math. Soc., 24, page xlviii (1926). doi: 10.1112/plms/s2-24.1.1-s
  8. 8.
    Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120, 79–88 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Jamet, P.: Estimations d’erreur pour des elements finis droits presque degeneres, R.A.I.R.O. Anal. Numer. 10, 43–61 (1976)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Kobayashi, K.: On the interpolation constants over triangular elements (in Japanese). RIMS Kokyuroku 1733, 58–77 (2011)Google Scholar
  11. 11.
    Kobayashi, K., Tsuchiya, T.: A Babuška-Aziz type proof of the circumradius condition. Jpn. J. Indus. Appl. Math. 31, 193–210 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Liu, X., Kikuchi, F.: Analysis and estimation of error constants for \(P_0\) and \(P_1\) interpolations over triangular finite elements. J. Math. Sci. Univ. Tokyo 17, 27–78 (2010)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Rademacher, H.: Über partielle und totale differenzierbarkeit von funktionen mehrerer vaiabeln und über die transformation der doppelintegrale. Math. Ann. 79, 340–359 (1919). doi: 10.1007/BF01498415 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Rademacher, H.: Über partielle und totale differenzierbarkeit von funktionen mehrerer vaiabeln II. Math. Ann. 81, 52–63 (1920). doi: 10.1007/BF01563620 CrossRefMathSciNetGoogle Scholar
  15. 15.
    Radò, T.: Length and Area. American Mathematical Society, USA (1948)zbMATHGoogle Scholar
  16. 16.
    Radò, T.: On the Problem of Plateau. Springer (1933), reprint by Chelsea (1951)Google Scholar
  17. 17.
    Rand, A.: Delaunay refinement algorithms for numerical methods. Ph.D. dissertation, Carnegie Mellon University, 2009Google Scholar
  18. 18.
    Saks, S.: Theory of the Integral. Warszawa-Lwów, 1937, reprint by Dover 2005Google Scholar
  19. 19.
    Young, W.H.: On the triangulation method of defining the area of a surface. Proc. London Math. Soc. 19, 117–152 (1921). doi: 10.1112/plms/s2-19.1.117 CrossRefGoogle Scholar
  20. 20.
    Zames, F.: Surface area and the cylinder area paradox. Coll. Math. J. 8, 207–211 (1977). This article is downloadable from
  21. 21.
    Zlámal, M.: On the finite element method. Numer. Math. 12, 394–409 (1968)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan 2015

Authors and Affiliations

  1. 1.Graduate School of Commerce and ManagementHitotsubashi UniversityKunitachiJapan
  2. 2.Graduate School of Science and EngineeringEhime UniversityMatsuyamaJapan

Personalised recommendations