Modeling and simulation of dynamics of three-component flows on solid surface

Original Paper Area 1

Abstract

In this paper, we propose a phase field model for the dynamics of three-component immiscible flows on solid surface. The model is an extension of the two-component phase field model consists of the Cahn–Hilliard Navier–Stokes equations with the generalized Navier boundary condition. The generalization of the approach to the three phase problem requires some extra consistency conditions for the system in the bulk and at the boundary in order for the model to give physically relevant results. We formulate the boundary conditions that enforce the consistency conditions using the Lagrangian multipliers. We then develop an efficient adaptive mesh refinement technique to solve the system. Several numerical results are given, including the buoyancy-driven droplet through a fluid–fluid interface, formation of four-phase contact line and dynamics of a compound droplet on solid surface under shear flow.

Keywords

Three-phase flow Moving contact line Adaptive finite element 

Mathematics Subject Classification

Primary 76T30 Secondary 76D45 

References

  1. 1.
    Kan, H.C., Udaykumar, H.S., Shyy, W., Tran-Son-Tay, R.: Hydrodynamics of a compound drop with application to leukocyte modeling. Phys. Fluids 10, 760–774 (1998)Google Scholar
  2. 2.
    Kan, H.C., Udaykumar, H.S., Shyy, W., Tran-Son-Tay, R.: Numerical analysis of the deformation of an adherent drop under shear flow. J. Biomech. Eng. 121(2), 160–169 (1999)CrossRefGoogle Scholar
  3. 3.
    Qian, T., Wang, X.P., Sheng, P.: Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68, 016306 (2003)CrossRefGoogle Scholar
  4. 4.
    Wang, X.P., Qian, T., Sheng, P.: Moving contact line on chemically patterned surfaces. J. Fluid Mech. 605, 59–78 (2008)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Qian, T., Wang, X.P., Sheng, P.: A variational approach to the moving contact line hydrodynamics. J. Fluid Mech. 564, 333–336 (2006)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Gao, M., Wang, X.P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231, 1372–1386 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Gao, M., Wang, X.P.: An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity. Journal of Computational Physics. 272, 704–718 (2014)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Di, Y., Wang, X.P.: Precursor simulations in spreading using a multi-mesh adaptive finite elment method. J. Comput. Phys. 228, 1380–1390 (2009)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    He, Q., Glowinski, R., Wang, X.P.: A least square/finite element method for the numerical solution of the Navier–Stokes–Cahn–Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230, 4991–5009 (2011)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Guo, S., Gao, M., Xiong, X., Jian Wang, Y., Wang, X., Sheng, P., Tong, P.: Direct measurement of friction of a fluctuating contact line. Phys. Rev. Lett. 111, 026101 (2013) PRL, 2013Google Scholar
  11. 11.
    Xianmin, Xu, Wang, Xiaoping: Analysis of wetting and contact angle hysteresis on chemically patterned surfaces. SIAM J. Appl. Math. 71(5), 1753–1779 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Boyer, F., Lapuerta, C.: Study of a three-component Cahn–Hilliard flow model. ESAIM: M2AN 40, 653–687 (2006)Google Scholar
  13. 13.
    Boyer, F., Sebastian, M.: Numerical schemes for a three component Cahn–Hilliard model. ESAIM: M2AN 45, 697–738 (2011)Google Scholar
  14. 14.
    Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn–Hilliard/Navier–Stokes model for the simulation of three-phase flows. Transp. Porous Med. 82, 463–483 (2010)Google Scholar
  15. 15.
    Kim, Junseok: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)MathSciNetGoogle Scholar
  16. 16.
    Kim, Junseok, Lowengrub, John: Phase-field modeling and simulation of three-phase flows. Interf. Free Bound. 7, 435–466 (2005)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kim, Junseok, Kang, Kyungkeun, Lowengrub, John: Conservative multigrid methods for ternary Cahn–Hilliard systems. Commun. Math. Sci. 2, 53–77 (2004)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Smith, K.A., Solis, F.J., Chopp, D.L.: A projection method for motion of triple junctions by levels sets. Interf. Free Bound. 4(3), 263–276 (2002)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Minjeaud, Sebastian: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Numer. Methods Partial Differ. Equ. 29(2), 584–618 (2013)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Bao, K., Shi, Y., Sun, S., Wang, X.P.: A finite element method for the numerical solution of the coupled Cahn Hilliard and Navier Stokes system for moving contact line problems. J. Comput. Phys. 231, 8083–8099 (2012)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Shi, Y., Bao, K., Wang, X.P.: 3D adaptive finite element method for a phase field model for moving contact line problems. Inverse Probl. Imaging 3, 947–959 (2013)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Qian, T., Wang, X.P., Sheng, P.: Molecular hydrodynamics of the moving contact line in two-phase immiscible flows. Commun. Comput. Phys. 1, 1–52 (2006)MATHGoogle Scholar
  23. 23.
    Jacqmin, D.: Contact line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22, 237–254 (2006)CrossRefGoogle Scholar
  26. 26.
    Mahadevan, L., Adda-Bedia, M., Pomeau, Y.: Four-phase merging in sessile compound drops. J. Fluid Mech. 451, 411–420 (2002)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan 2014

Authors and Affiliations

  1. 1.Institute of Applied Physics and Computational MathematicsBeijingChina
  2. 2.Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonChina

Personalised recommendations