Matroid rank functions and discrete concavity

Original Paper Area 1

Abstract

We discuss the relationship between matroid rank functions and a concept of discrete concavity called \({{\rm M}^{\natural}}\)-concavity. It is known that a matroid rank function and its weighted version called a weighted rank function are \({{\rm M}^{\natural}}\)-concave functions, while the (weighted) sum of matroid rank functions is not \({{\rm M}^{\natural}}\)-concave in general. We present a sufficient condition for a weighted sum of matroid rank functions to be an \({{\rm M}^{\natural}}\)-concave function, and show that every weighted rank function can be represented as a weighted sum of matroid rank functions satisfying this condition.

Keywords

Matroid Rank function Discrete concave function Submodular function Combinatorial optimization 

Mathematics cSubject Classification

90C27 68Q25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint. In: Integer Programming and Combinatorial Optimization, 12th International IPCO Conference. Lecture Notes in Computer Science, vol. 4513, pp. 182–196. Springer, Berlin (2007)Google Scholar
  2. 2.
    Dughmi, S.: A truthful randomized mechanism for combinatorial public projects via convex optimization. In: Proceedings of the 12th ACM Conference on Electronic Commerce (EC-2011), pp. 263–272. ACM, New York (2011)Google Scholar
  3. 3.
    Dress A.W.M., Wenzel W.: Valuated matroids. Adv. Math. 93, 214–250 (1992)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Dughmi, S., Roughgarden, T., Sundararajan, M.: Revenue submodularity. In: Proceedings of the 10th ACM Conference on Electronic Commerce (EC-2009), pp. 243–252. ACM, New York (2009)Google Scholar
  5. 5.
    Dughmi, S., Roughgarden, T., Yan, Q.: From convex optimization to randomized mechanisms: toward optimal combinatorial auctions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, pp. 149–158. ACM, New York (2011)Google Scholar
  6. 6.
    Dughmi, S., Vondrák, J.: Limitations of randomized mechanisms for combinatorial auctions. In: Proceedings of IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pp. 502–511. IEEE, Los Alamitos (2011)Google Scholar
  7. 7.
    Frank A., Frank A.: Generalized polymatroids and submodular flows. Math. Progr. 42, 489–563 (1988)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fujishige S.: Submodular Functions and Optimization. 2nd edn. Elsevier, Amsterdam (2005)MATHGoogle Scholar
  9. 9.
    Fujishige S., Yang S.: A note on Kelso and Crawford’s gross substitutes condition. Math. Oper. Res. 28, 463–469 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Iwata S., Murota K., Shigeno M.: A fast submodular intersection algorithm for strong map sequences. Math. Oper. Res. 22, 803–813 (1997)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Lehmann B., Lehmann D.J., Nisan N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55, 270–296 (2006)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Murota K.: Discrete convex analysis. Math. Progr. 83, 313–371 (1998)MathSciNetMATHGoogle Scholar
  13. 13.
    Murota K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)MATHCrossRefGoogle Scholar
  14. 14.
    Murota K.: Submodular function minimization and maximization in discrete convex analysis. RIMS Kokyuroku Bessatsu B23, 193–211 (2010)MathSciNetMATHGoogle Scholar
  15. 15.
    Murota K., Shioura A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Oxley J.: Matroid Theory. Oxford University Press, New York (1992)MATHGoogle Scholar
  17. 17.
    Reijnierse H., van Gellekom A., Potters J.A.M.: Verifying gross substitutability. Econ. Theory 20, 767–776 (2002)MATHCrossRefGoogle Scholar
  18. 18.
    Schrijver A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)MATHGoogle Scholar
  19. 19.
    Shioura A.: On the pipage rounding algorithm for submodular function maximization: a view from discrete convex analysis. Discret. Math. Algorithms Appl. 1, 1–23 (2009)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Tardos, É.:Generalized matroids and supermodular colourings. In: Recski A.,Lovász L. (eds.) Matroid Theory, Colloquia Mathematica Societatis János Bolyai 40, pp. 359–382. North-Holland, Amsterdam (1985)Google Scholar
  21. 21.
    Welsh D.J.A.: Matroid Theory. Academic Press, London (1976)MATHGoogle Scholar
  22. 22.
    Welsh D.J.A. (1995) Matroids: fundamental concepts. In: Graham R.L., Grötschel M., Lovász L. (eds.) Handbook of Combinatorics, pp. 481–526. Elsevier, Amsterdam.Google Scholar

Copyright information

© The JJIAM Publishing Committee and Springer 2012

Authors and Affiliations

  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations