Advertisement

Numerical conformal mappings onto the linear slit domain

  • Kaname Amano
  • Dai Okano
  • Hidenori Ogata
  • Masaaki Sugihara
Open Access
Original Paper Area 1

Abstract

We propose a numerical method for the conformal mapping of unbounded multiply connected domains exterior to closed Jordan curves C 1, . . . ,C n onto a canonical linear slit domain, which is the entire plane with linear slits S 1, . . . , S n of angles θ 1, . . . , θ n arbitrarily assigned to the real axis, respectively. If θ 1 = · · · = θ n θ then it is the well-known parallel slit domain, which is important in the problem of potential flows past obstacles. In the method, we reduce the mapping problem to a boundary value problem for an analytic function, and approximate it by a linear combination of complex logarithmic functions based on the charge simulation method. Numerical examples show the effectiveness of our method.

Keywords

Conformal mapping Multiply connected domain Potential flow Charge simulation Fundamental solution 

Mathematics Subject Classification

30C30 65E05 

Notes

Acknowledgments

The authors wish to thank Emeritus Prof. M. Shiba (Hiroshima University) and Prof. T. Sakajo (Hokkaido University) for their helpful discussion.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    Amano K.: Numerical conformal mapping based on the charge simulation method (in Japanese). Trans. Inform. Process. Soc. Japan 28, 697–704 (1987)Google Scholar
  2. 2.
    Amano K.: A charge simulation method for the numerical conformal mapping of interior, exterior and doubly-connected domains. J. Comput. Appl. Math. 53, 353–370 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Amano K.: A charge simulation method for numerical conformal mapping onto circular and radial slit domains. SIAM J. Sci. Comput. 19, 1169–1187 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Amano K., Okano D., Ogata H., Shimohira H., Sugihara M.: A systematic scheme of numerical conformal mappings of unbounded multiply-connected domains by the charge simulation method (in Japanese). IPSJ J. 42, 385–395 (2001)MathSciNetGoogle Scholar
  5. 5.
    Amano K., Ootori H., Li T., Endo K., Okano D.: Numerical conformal mappings onto a rectilinear slit domain by the charge simulation method (in Japanese). IPSJ J. 50, 1775–1779 (2009)Google Scholar
  6. 6.
    Amano K., Okano D.: A circular and radial slit mapping of unbounded multiply connected domains. JSIAM Lett. 2, 53–56 (2010)Google Scholar
  7. 7.
    Benchama N., DeLillo T.K., Hrycak T., Wang L.: A simplified Fornberg-like method for the conformal mapping of multiply connected regions—comparisons and crowding. J. Comput. Appl. Math. 209, 1–21 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Crowdy D.G.: Analytical solutions for uniform potential flow past multiple cylinders. Eur. J. Mech. B Fluids 25, 459–470 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Crowdy D.G., Marshall J.: Conformal mappings between canonical multiply connected domains. Comput. Methods Funct. Theory 6, 59–76 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    DeLillo T.K., Horn M.A., Pfaltzgraff J.A.: Numerical conformal mapping of multiply connected regions by Fornberg-like methods. Numer. Math. 83, 205–230 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    DeLillo T.K., Elcrat A.R., Pfaltzgraff J.A.: Schwarz–Christoffel mapping of multiply connected domains. J. Anal. Math. 94, 17–47 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    DeLillo T.K., Driscoll T.A., Elcrat A.R., Pfaltzgraff J.A.: Radial and circular slit maps of unbounded multiply connected circle domains. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464, 1719–1737 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Driscoll T.A., Trefethen L.N.: Schwarz–Christoffel Mapping. Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Fornberg B.: A numerical method for conformal mappings. SIAM J. Sci. Stat. Comput. 1, 386–400 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Fornberg B.: A numerical method for conformal mapping of doubly connected regions. SIAM J. Sci. Stat. Comput. 5, 771–783 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gaier D.: Konstruktive Methoden der konformen Abbildung. Springer, Berlin (1964)zbMATHCrossRefGoogle Scholar
  17. 17.
    Gaier D.: Integralgleichungen erster Art und konforme Abbildung. Math. Z. 147, 113–129 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gaier, D.: Das logarithmische Potential und die konforme Abbildung mehrfach zusammenhängender Gebiete. In: Butzer, P.L., Fehér, F. (eds.) E.B. Christoffel, The Influence of his Work on Mathematics and the Physical Scienecs, pp. 290–303. Birkhäuser, Basel (1981)Google Scholar
  19. 19.
    Gutknecht M.H.: Numerical conformal mapping methods based on function conjugation. J. Comput. Appl. Math. 14, 31–77 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hayes J.K., Kahaner D.K., Kellner R.G.: An improved method for numerical conformal mapping. Math. Comput. 26, 327–334 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Henrici P.: Applied and Computational Complex Analysis, vol. 3. Wiley, New York (1986)Google Scholar
  22. 22.
    Hough D.M., Papamichael N.: The use of splines and singular functions in an integral equation method for conformal mapping. Numer. Math. 37, 133–147 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Hough D.M., Papamichael N.: An integral equation method for the numerical conformal mapping of interior, exterior and doubly-connected domains. Numer. Math. 41, 287–307 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Iima M., Yanagita T.: Is a two-dimensional butterfly able to fly by symmetric flapping?. J. Phys. Soc. Japan 70, 5–8 (2001)CrossRefGoogle Scholar
  25. 25.
    Katsurada M., Okamoto H.: A mathematical study of the charge simulation method I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35, 507–518 (1988)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Katsurada M., Okamoto H.: The collocation points of the fundamental solution method for the potential problem. Comput. Math. Appl. 31, 123–137 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Kitagawa T.: On the numerical stability of the method of fundamental solution applied to the Dirichlet problem. Japan J. Appl. Math. 5, 123–133 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Koebe P.: Abhandlungen zur Theorie der konformen Abbildung IV, Abbildung mehrfach zusammenhängender schlichter Bereiche auf Schlitzbereiche. Acta Math. 41, 305–344 (1916)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kythe P.K.: Computational Conformal Mapping. Birkhäuser, Boston (1998)zbMATHGoogle Scholar
  30. 30.
    Lentink D., Dickson W.B., van Leeuwen J.L., Dickinson M.H.: Leading-edge vortices elevate lift of autorotating plant seeds. Science 324, 1438–1440 (2009)CrossRefGoogle Scholar
  31. 31.
    Milne-Thomson L.M.: Theoretical Hydrodynamics. Dover, New York (1996)Google Scholar
  32. 32.
    Murashima S., Kuhara H.: An approximate method to solve two-dimensional Laplace’s equation by means of superposition of Green’s functions on a Riemann surface. J. Inform. Process. 3, 127–139 (1980)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Murota K.: Comparison of conventional and “invariant” schemes of fundamental solutions method for annular domains. Japan J. Indust. Appl. Math. 12, 61–85 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Nehari Z.: Conformal Mapping. McGraw-Hill, New York (1952)zbMATHGoogle Scholar
  35. 35.
    Ogata H., Okano D., Amano K.: Numerical conformal mapping of periodic structure domains. Japan J. Indust. Appl. Math. 19, 257–275 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Ogata H., Okano D., Sugihara M., Amano K.: Unique solvability of the linear system appearing in the invariant scheme of the charge simulation method. Japan J. Indust. Appl. Math. 20, 17–35 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Ogata H., Amano K., Sugihara M., Okano D.: A fundamental solution method for viscous flow problems with obstacles in a periodic array. J. Comput. Appl. Math. 152, 411–425 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Ogata H.: A fundamental solution method for three-dimensional Stokes flow problems with obstacles in a planar periodic array. J. Comput. Appl. Math. 189, 622–634 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Ogata H., Amano K.: A fundamental solution method for three-dimensional viscous flow problems with obstacles in a periodic array. J. Comput. Appl. Math. 193, 302–318 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Ogata H., Amano K.: A fundamental solution method for two-dimensional Stokes flow problems with one-dimensional periodicity. Japan J. Indus. Appl. Math. 27, 191–215 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Okano D., Ogata H., Amano K., Sugihara M.: Numerical conformal mappings of bounded multiply connected domains by the charge simulation method. J. Comput. Appl. Math. 159, 109–117 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Sakajo T.: Equation of motion for point vortices in multiply connected circular domains. Proc. R. Soc. Lond. Ser. A Math. Phy. Eng. Sci. 465, 2589–2611 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Shiba M.: On the Riemann–Roch theorem on open Riemann surfaces. J. Math. Kyoto Univ. 11, 495–525 (1971)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Singer H., Steinbigler H., Weiss P.: A charge simulation method for the calculations of high voltage fields. IEEE Trans. Power Apparat. Syst. PAS-93, 1660–1668 (1974)CrossRefGoogle Scholar
  45. 45.
    Symm G.T.: An integral equation method in conformal mapping. Numer. Math. 9, 250–258 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Symm G.T.: Numerical mapping of exterior domains. Numer. Math. 10, 437–445 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Symm G.T.: Conformal mapping of doubly-connected domains. Numer. Math. 13, 448–457 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Trefethen, L.N. (ed.) Numerical Conformal Mapping. North-Holland, Amsterdam (1986)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Kaname Amano
    • 1
  • Dai Okano
    • 1
  • Hidenori Ogata
    • 2
  • Masaaki Sugihara
    • 3
  1. 1.Department of Electrical and Electronic Engineering and Computer Science, Graduate School of Science and EngineeringEhime UniversityMatsuyamaJapan
  2. 2.Department of Communication Engineering and Informatics, Graduate School of Informatics and EngineeringThe University of Electro-CommunicationsChofuJapan
  3. 3.Department of Mathematical Informatics, Graduate School of Information Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations