Advertisement

Weak formulation of Hadamard variation applied to the filtration problem

  • Takashi Suzuki
  • Takuya TsuchiyaEmail author
Original Paper Area 2
  • 67 Downloads

Abstract

Quantities defined using a solution of an elliptic boundary value problem may vary when the boundary of the domain is perturbed. Such a variation with respect to domain perturbation is called Hadamard variation. We present a weak formulation of Hadamard variation and apply it to the filtration (or dam) problem. We obtain first Hadamard variations of quantities arising in the variational principle of the filtration problem. The correctness of the obtained first variations is confirmed by numerical experiments. Using the first variations, we propose a numerical iterative scheme for the filtration problem. Numerical examples show good performance of the presented scheme.

Keywords

Hadamard variation Filtration problem 

Mathematics Subject Classification (2000)

35J05 35R35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alt H.W.: A free boundary problem associated with the flow of ground water. Arch. Ration. Mech. Anal. 64, 111–126 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alt H.W.: Numerical solution of steady-state porous flow free boundary problems. Numer. Math. 36, 73–98 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alt H.W., Gilardi G.: The behavior of the free boundary for the dam problem. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 9, 571–626 (1982)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Azegami H., Takeuchi K.: A smoothing method for shape optimization: traction method using the robin condition. Int. J. Comput. Methods 3, 21–33 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Baiocchi C.: Su un problema di frontiera libera connesso a questioni di idraulica. Ann. Mat. Pura Appl. (4) 92, 107–127 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Baiocchi C., Capelo A.: Variational and Quasivariational Inequalities. Applications to Free-Boundary Problems. Wiley, New York (1984)zbMATHGoogle Scholar
  7. 7.
    Baiocchi C., Comincioli V., Magenes E., Pozzi G.A.: Free boundary problems in the theory of fluid flow through porous media: existence and uniqueness theorems. Ann. Mat. Pura Appl. (4) 97, 1–82 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Brezis H., Kinderlehrer D., Stampacchia G.: Sur une nouvelle formulation du problème de l’écoulement à travers une digue. C. R. Acad. Sci. Paris 287, 711–714 (1978)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Carrillo-Menendez J., Chipot M.: Sur l’unicité de la solution du problème de l’écoulement à travers une digue. C. R. Acad. Sci. Paris 292, 191–194 (1981)MathSciNetGoogle Scholar
  10. 10.
    Friedman A.: Vaiational Principles and Free-Boundary Problems. Wiley-Interscience, New York (1982)Google Scholar
  11. 11.
    Haslinger J., Hoffmann K.-H., Mäkinen R.A.E.: Optimal control/dual approach for the numerical solution of a dam problem. Adv. Math. Sci. Appl. 2, 189–213 (1993)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kaizu S., Azegami H.: Optimal shape problems and traction method. Trans. Jpn. Soc. Ind. Appl. Math. 16, 277–290 (2006) (in Japanese)Google Scholar
  13. 13.
    Palmerio B., Dervieux A.: Hadamard’s variational formula for a mixed problem and an application to a problem related to a Signorini-like variational inequality. Numer. Funct. Anal. Optim. 1, 113–144 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Sokolowski J., Zolesio J-P.: Introduction to Shape Optimization. Springer, Berlin (1992)zbMATHGoogle Scholar
  15. 15.
    Suzuki T., Tsuchiya T.: Convergence analysis of trial free boundary methods for the two-dimensional filtration problem. Numer. Math. 100, 537–564 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer 2011

Authors and Affiliations

  1. 1.Division of Mathematical Science, Department of System Innovation, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.Graduate School of Science and EngineeringEhime UniversityMatsuyamaJapan

Personalised recommendations