Advertisement

Japan Journal of Industrial and Applied Mathematics

, Volume 27, Issue 2, pp 295–322 | Cite as

Numerical approach to transient dynamics of oscillatory pulses in a bistable reaction–diffusion system

  • Masaharu Nagayama
  • Kei-ichi UedaEmail author
  • Masaaki Yadome
Original Paper Area 1

Abstract

Various types of interesting pattern dynamics such as self-replicating patterns and spiral patterns have been observed in reaction–diffusion (RD) systems. In recent years, periodically oscillating pulses called breathers have been found in several RD systems. In addition, the transient dynamics from traveling breathers to standing breathers have been numerically investigated, and the existence and stability of breathers have been studied by (semi-)rigorous approaches. However, the mechanism of transient dynamics has yet to be clarified, even using numerical approaches, since the global bifurcation diagram of breathers has not been obtained. In this article, we propose a numerical scheme that enables unstable breathers to be tracked. By using the global bifurcation diagram, we numerically investigate the global behavior of unstable manifolds emanating from the bifurcation point associated with the transient dynamics and clarify the onset mechanism of the transient dynamics.

Keywords

Oscillatory pulse Reaction–diffusion system Transient dynamics Bifurcation 

Mathematics Subject Classification (2000)

35B36 35B32 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pearson J.E.: Complex patterns in a simple system. Science 261, 189–192 (1993)CrossRefGoogle Scholar
  2. 2.
    Mimura M., Nagayama M.: Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability. Chaos 7(4), 817–826 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Mimura M., Nagayama M., Ikeda H., Ikeda T.: Dynamics of travelling breathers arising in reaction-diffusion systems—ODE modelling approach. Hiroshima Math. J. 30(2), 221–256 (2000)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Nishiura Y., Ueyama D.: Spatio-temporal chaos for the Gray-Scott model. Phys. D 150, 137–162 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Nishiura Y., Teramoto T., Ueda K.-I.: Scattering and separators in dissipative systems. Phys. Rev. E 67, 056210 (2003)CrossRefGoogle Scholar
  6. 6.
    Argentina M., Coullet P., Mahadevan L.: Colliding waves in a model excitable medium: preservation, annihilation, and bifurcation. Phys. Rev. Lett. 79, 2803–2806 (1997)CrossRefGoogle Scholar
  7. 7.
    Hayase Y., Ohta T.: Sierpinski gasket in a reaction-diffusion system. Phys. Rev. Lett. 81, 1726–1729 (1998)CrossRefGoogle Scholar
  8. 8.
    Ikeda T., Ikeda H., Mimura M.: Hopf bifurcation of travelling pulses in some bistable reaction-diffusion systems. Methods Appl. Anal. 7, 165–194 (2000)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Ikeda H., Ikeda T.: Bifurcation phenomena from standing pulse solutions in some reaction-diffusion systems. J. Dyn. Differ. Equ. 12, 117–167 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Aprille T.J., Trick T.N.: Steady-state analysis of nonlinear circuits with periodic inputs. Proc. IEEE 60(1), 108–114 (1972)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Aprille T.J., Trick T.N.: A computer algorithm to determine the steady-state response of nonlinear oscillators. Circuit Theory, IEEE Trans 19(4), 354–360 (1972)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Doedel E., Keller H.B., Kernevez J.P.: Numerical analysis and control of bifurcation problems (I): bifurcation in finite dimensions. Int. J. Bifurcat. Chaos 1(4), 745–772 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Doedel E., Keller H.B., Kernevez J.P.: Numerical analysis and control of bifurcation problems (II): bifurcation in infinite dimensions. Int. J. Bifurcat. Chaos 1(3), 493–520 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A.: Spectral methods in fluid dynamics. Springer, Berlin (1988)zbMATHGoogle Scholar
  15. 15.
    Sandstede B., Scheel A.: Absolute and convective instabilities of waves on unbounded and large bounded domains. Phys. D 145, 233–277 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ikeda H.: Singular perturbation approach to stability properties of traveling wave solutions of reaction-diffusion systems. Hiroshima Math. J. 19, 587–630 (1989)zbMATHMathSciNetGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer 2010

Authors and Affiliations

  • Masaharu Nagayama
    • 1
    • 2
  • Kei-ichi Ueda
    • 3
    Email author
  • Masaaki Yadome
    • 4
  1. 1.Faculty of Mathematics and Physics, Institute of Science and EngineeringKanazawa UniversityKanazawa, IshikawaJapan
  2. 2.JST PRESTO, Japan Science and Technology AgencyKawaguchi, SaitamaJapan
  3. 3.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan
  4. 4.Division of Mathematical and Physical Sciences, Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawa, IshikawaJapan

Personalised recommendations