Advertisement

International Journal of Early Childhood

, Volume 49, Issue 2, pp 229–243 | Cite as

Preschool Teachers’ Pedagogical Content Knowledge in Mathematics

  • Jae Eun Lee
Original Article

Abstract

The study investigated preschool teachers’ pedagogical content knowledge (PCK) in mathematics. The construct of PCK for teaching mathematics in preschool involves three components: (1) noticing mathematical situations in which children engage; (2) interpreting the nature of children’s math activity; and (3) enhancing children’s mathematical thinking and understanding. The research participants were 30 preschool teachers from a large city in South Korea. Teachers identified mathematical situations in a children’s play scenario, interpreted the nature of the mathematical situations, and identified how children’s mathematical thinking in the reported situation could be enhanced. The teachers’ responses were quantitatively scored. The results indicate that participants possessed higher levels of PCK about number sense, measurement, and classification than for patterning, operations, shapes, and spatial relationships. Teachers need knowledge to interpret mathematical situations in order to identify ways to enhance children’s mathematical thinking. Teachers with more teaching experience were more likely to have higher scores on the overall PCK measure. Teachers require greater knowledge to recognize specific mathematical concepts in use in children’s play in order to be able to extend and enhance preschool children’s mathematical thinking.

Keywords

Preschool mathematics Preschool teachers Pedagogical content knowledge Mathematical thinking Teacher knowledge 

Résumé

L’étude a porté sur la connaissance du contenu pédagogique (CCP) des enseignants du préscolaire en mathématiques. La construction de la CCP pour l'enseignement des mathématiques au niveau préscolaire comporte trois volets: (1) remarquer les situations mathématiques dans lesquelles les enfants s’engagent; (2) interpréter la nature de l'activité mathématique des enfants; et (3) accroître la pensée et la compréhension mathématiques des enfants. Les participants à la recherche étaient 30 enseignants du préscolaire d'une grande ville de Corée du Sud. Les enseignants identifiaient les situations mathématiques dans un scénario de jeu d’enfants, interprétaient la nature des situations mathématiques et identifiaient comment la pensée mathématique des enfants dans la situation rapportée pourrait être améliorée. Les réponses des enseignants étaient quantitativement notées. Les résultats indiquent que les participants possédaient des niveaux plus élevés de CCP sur le sens du nombre, la mesure et la classification que sur la modélisation, les opérations, les formes et les relations spatiales. Les enseignants ont besoin de connaissances pour interpréter les situations mathématiques afin d’identifier les moyens d'améliorer la pensée mathématique des enfants. Les enseignants plus expérimentés étaient plus susceptibles d’avoir des scores plus élevés à la mesure globale de la CCP. Les enseignants ont besoin de plus de connaissance pour reconnaître les concepts mathématiques spécifiques utilisés dans le jeu des enfants afin d’être en mesure d'accroître et d’améliorer la pensée mathématique des enfants d’âge préscolaire

Resumen

El estudió investigó el conocimiento de contenido pedagógico de profesores preescolares en matemática (PCK). La construcción de PCK para la enseñanza de matemática en el preescolar involucra tres componentes: (1) advertir situaciones matemáticas en las que los niños se involucran; (2) interpretar la naturaleza de la actividad matemática de los niños; y (3) fomentar el pensamiento matemático y el entendimiento de los niños y niñas. Los participantes de la investigación fueron 30 profesores preescolares de una ciudad grande de Corea del Sur. Los profesores identificaron situaciones matemáticas en un escenario de juego infantil; interpretaron la naturaleza de las situaciones matemáticas; e identificaron cómo el pensamiento matemático de los niños en la situación reportada podría ser fomentado. Las respuestas de los profesores fueron puntuadas cuantitativamente. Los resultados indicaron que los participantes que poseían niveles de PCK más altos acerca del sentido numérico, mediciones y clasificaciones no los tenían para patrones, operaciones numéricas, formas y relaciones espaciales. Los profesores necesitan conocimiento para interpretar las situaciones matemáticas para identificar formas de potenciar el pensamiento matemático en los niños. Los profesores con más experiencia pedagógica poseían mayores posibilidades de obtener puntajes más altos en el PCK general. Los profesores requieren mayores niveles de conocimiento para reconocer conceptos matemáticos específicos para su utilización en los juegos de los niños, para ser capaces de extender y potenciar el pensamiento matemático de niños de preescolar.

Notes

Acknowledgements

This study was supported by research Grants from the Baekseok University in 2016.

References

  1. Anders, Y., & Rossbach, H.-G. (2015). Preschool teachers’ sensitivity to mathematics in children’s play: The influence of math-related school experiences, emotional attitudes, and pedagogical beliefs. Journal of Research in Childhood Early Education, 29, 305–322.CrossRefGoogle Scholar
  2. Aubrey, C., Ghent, K., & Kanira, E. (2012). Enhancing thinking skills in early childhood. International Journal of Early Years Education, 20(4), 332–348.CrossRefGoogle Scholar
  3. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.CrossRefGoogle Scholar
  4. Baroody, A. J., Lai, M., & Mix, K. (2006). The development of young children’s number and operation sense and its implications for early childhood education. In B. Spodek & O. Saracho (Eds.), Handbook of research on the education of young children (pp. 187–221). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  5. Brandt, B. (2013). Everyday pedagogical practices in mathematical play situations in German “kindergarten”. Educational Studies in Mathematics, 84(2), 227–248.CrossRefGoogle Scholar
  6. Chang, M. L. (2013). Nuri curriculum: The first step toward the integration of split systems of early childhood education and care in Korea. Seoul: Korea Institute of Child Care and Education.Google Scholar
  7. Clements, D. H. (2004). Major themes and recommendations. In D. H. Clements, J. Sarama, & A.-M. DiBiase (Eds.), Engaging young children in mathematics: Standards for early childhood mathematics education. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  8. Clements, D. H., Sarama, J., & DiBiase, A. M. (2004). Engaging young children in mathematics: Standards for early childhood mathematics education. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  9. Copley, J. V. (2010). The young child and mathematics (2nd ed.). Washington: National Association for the Education of Young Children.Google Scholar
  10. Edo, M., Planas, N., & Badillo, E. (2009). Mathematical learning in a context of play. European Early Childhood Education Research Journal, 17(3), 325–341.CrossRefGoogle Scholar
  11. Empson, S., & Junk, D. (2004). Teachers’’knowledge of children’’ mathematics after implementing a student-centered curriculum. Journal of Mathematics Teacher Education, 7(2), 121–144.CrossRefGoogle Scholar
  12. Gervasoni, A., Hunter, R., Bicknell, B., & Sexton, M. (2012). Powerful pedagogical actions in mathematics education. In B. Perry, T. Lowrie, T. Logan, A. MacDonald, & J. Greenlees (Eds.), Research in mathematics education in Australasia (pp. 193–218). Rotterdam: Sense Publishers.Google Scholar
  13. Ginsburg, H., & Amit, M. (2008). What is teaching mathematics to young children? A theoretical perspective and case study. Journal of Applied Developmental Psychology, 29(4), 274–285.CrossRefGoogle Scholar
  14. Ginsburg, H. P., & Ertle, B. (2008). Knowing the mathematics in early childhood mathematics. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 45–66). Charlotte: Information Age Publishing.Google Scholar
  15. Grossman, P. L. (1990). The making of a teacher: Teacher knowledge & teacher education. New York: Macmillan.Google Scholar
  16. Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–401.CrossRefGoogle Scholar
  17. Jacobs, V. R., Lamb, L., & Philipp, R. A. (2010). Professional noticing of children’’ mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169–202.Google Scholar
  18. Korea Education Statistics Service. (2015). Statistical year book of education. Seoul: Korean Educational Development Institute.Google Scholar
  19. Korean Ministry of Education & Ministry of Health and Welfare. (2013). Guidelines of 3–5 year-old Nuri curriculum for early childhood teachers.Google Scholar
  20. Lee, J. (2010). Exploring kindergarten teachers’ pedagogical content knowledge of mathematics. International Journal of Early Childhood, 42(1), 27–41.CrossRefGoogle Scholar
  21. Lee, J. E. (2014). A study of pre-kindergarten teachers’ knowledge about children’s mathematical thinking. Australasian Journal of Early Childhood, 39(4), 29–36.Google Scholar
  22. Loughran, J. (2010). What expert teachers do: Enhancing professional knowledge for classroom practice. New York: Routledge.Google Scholar
  23. MacDonald, A., Davies, N., Dockett, S., & Perry, B. (2012). Early childhood mathematics education. In B. Perry, T. Lowrie, T. Logan, A. MacDonald, & J. Greenlees (Eds.), Research in mathematics education in Australasia (pp. 169–192). Rotterdam: Sense Publishers.Google Scholar
  24. McCray, J. S. (2008). Pedagogical content knowledge for preschool mathematics: Teacher knowledge and math-related language contribute to children’s learning. Chicago: Erikson Institute.Google Scholar
  25. McCray, J. S., & Chen, J.-Q. (2012). Pedagogical content knowledge for preschool mathematics: Construct validity of a new teacher interview. Journal of Research in Childhood Education, 26, 291–307.CrossRefGoogle Scholar
  26. National Council of Teachers of Mathematics (NCTM). (2002). Principles and standards for school mathematics. Reston: NCTM.Google Scholar
  27. Sarama, J., & DiBiase, A.-M. (2004). The professional development challenge in preschool mathematics. In D. H. Clements, J. Sarama, & A.-M. DiBiase (Eds.), Engaging young children in mathematics: Standards for early childhood mathematics education. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  28. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Research, 15(2), 4–14.CrossRefGoogle Scholar
  29. Stipek, D., Schoenfeld, A., & Gomby, D. (2012). Math matters, even for little kids. Education Week, 31(26), 27–29.Google Scholar
  30. van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom interactions. Journal of Technology and Teacher Education, 10, 571–596.Google Scholar
  31. Vogel, R. (2013). Mathematical situations of play and exploration. Educational Studies in Mathematics, 84(2), 209–225.CrossRefGoogle Scholar
  32. Yore, L. D., Pimm, D., & Tuan, H.-L. (2007). The literacy component of mathematical and scientific literacy. International Journal of Science and Mathematics Education, 5(4), 559–589.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Early Childhood EducationBaekseok UniversityCheonanSouth Korea

Personalised recommendations