Advertisement

Exploring Kindergarten Teachers’ Pedagogical Content Knowledge of Mathematics

  • Joohi LeeEmail author
Article

Abstract

The purpose of this study was to assess 81 kindergarten teachers’ pedagogical content knowledge of mathematics on six subcategory areas such as number sense, pattern, ordering, shapes, spatial sense, and comparison. The data showed participants possessed a higher level of pedagogical content knowledge of “number sense” (M = 89.12) compared to other mathematics pedagogical content areas. The second highest scores among six subcategories of pedagogical content knowledge of mathematics was for the pedagogical content area of “pattern” (M = 82.33). The lowest scores among those six subcategories of kindergarten teachers’ pedagogical content knowledge were obtained from the subcategory of “spatial sense” (M = 44.23), which involved the means to introduce children to spatial relationships. The second lowest score was obtained for the subcategory of “comparison” (M = 50.40) which involved the means to introduce the concept of graphing and the use of a balance scale for measurement.

Keywords

Pedagogical content knowledge of mathematics Teaching young children mathematics Kindergarten teachers’ pedagogical content knowledge 

Résumé

El propósito de este estudio fue el evaluar el conocimiento pedagógico del contenido de matemáticas en 81 maestros de educación infantil en seis subcategorías tales como el sentido de número, patrones, orden, sentido espacial y comparación. Los datos mostraron que los participantes poseen un nivel más alto de conocimiento pedagógico en “sentido de número” (M = 89.12) en comparación con otras áreas de contenido pedagógico de matemáticas. El segundo resultado más alto entres las seis subcategorías fue el área de contenido pedagógico de “patrones” (M = 82.33). Las dos subcategorías que muestran más bajos resultados en relación al conocimiento pedagógico del contenido de matemáticas en maestros de educación infantil fue la subcategoría de “sentido espacial” (M = 44.23), lo cual incluyó los medios por los cuales se introducen o presentan relaciones espaciales a los niños. El segundo resultado más bajo fue obtenido para la subcategoría de “comparación” (M = 50.40) lo que incluyó el cómo introducir el concepto de graficar y la utilización de una escala de balance para la medición.

Resumen

Le but de cette étude était d’évaluer chez 81 professeurs de jardin d’enfants la connaissance de six sous-catégories de contenu pédagogique en mathématiques, soit le sens du nombre, le modèle, la mise en ordre, les formes, le sens spatial, et la comparaison. Les données montrent que les participants connaissaient mieux le contenu pédagogique du «sens du nombre » (M = 89.12) que de celui des autres secteurs. Le deuxième score de connaissance le plus élevé parmi les six sous-catégories de contenu pédagogique en mathématiques se trouve au secteur « modèle » (M = 82.33). Le score le plus bas des professeurs de jardin d’enfants à ces six sous-catégories a été obtenu à la sous-catégorie « sens spatial » (M = 44.23), relative aux moyens de présenter les relations spatiales aux enfants. Le deuxième score le plus bas a été obtenu à la sous-catégorie « comparaison » (M = 50.40) qui portait sur les moyens de présenter le concept de graphique et l’usage d’une balance à fléau pour mesurer.

References

  1. Alexander, R. (2004). Still no pedagogy? Principle, pragmatism and compliance in primary education. Cambridge Journal of Education, 34, 7–33.CrossRefGoogle Scholar
  2. Bredekamp, S., & Copple, C. (1997). Developmentally appropriate practice in early childhood programs. Washington, DC: NAEYC.Google Scholar
  3. Brophy, J. (1992). Conclusion to advances in research on teaching. In J.E. Brophy (Ed.), Advances in research on teaching: Teachers’ knowledge of subject matter as it relates to their teaching practices (pp. 347–361). Greenwich, CT: JAI Press.Google Scholar
  4. Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C., & Loef, M. (1989). Using knowledge of children’s mathematics thinking in classroom teaching: An experimental study. American Educational Research Journal, 26(4), 499–531.Google Scholar
  5. Cavin, R. M. (2008). Developing technological pedagogical content knowledge in preservice teachers through microteaching lesson study. Dissertation Abstracts International Section A: Humanities and Social Science, Vol. 69 (issue 2A), p. 569.Google Scholar
  6. Copley, J. V. (2000). The young child and mathematics. Washington, DC: NAEYC.Google Scholar
  7. Copley, J. V. (2001). The young child and mathematics. Washington, DC: National Association for the Education of Young Children.Google Scholar
  8. Cronk, B. C. (1999). How to use SPSS. CA: Pyrczk Publishing.Google Scholar
  9. Darling-Hammond, L., & Richardson, N. (2009). Teacher learning: What matters? Educational Leadership, 66, 46–53.Google Scholar
  10. Doverborg, E., & Samuelsson, I. P. (2000). To develop young children’s conception of numbers. Early Child Development and Care, 162, 81–107.CrossRefGoogle Scholar
  11. Doverborg, E., & Samuelsson, I. P. (2001). Children’s experience of shape in space. For the Learning of Mathematics, 21, 32–38.Google Scholar
  12. EdudataReports. (2008). Understanding mathematics performance: A longitudinal perspective. Retrieved June 3, 2009 from http://www.edudata.educ.ubc.ca/reading_room/reading_articles/MathPrinciplesPathways.pdf.
  13. Even, R. (1993). Subject-matter knowledge and pedagogical content knowledge: Prospective secondary teachers and the function concept. Journal for Research in Mathematics Education, 24(2), 94–116.CrossRefGoogle Scholar
  14. Feynman, R. P. (1995). Six easy pieces: Essentials of physics explained by its most brilliant teacher. New York: Addison-Wesley.Google Scholar
  15. Fuller, R. A. (1996). Elementary teachers’ pedagogical content knowledge of mathematics. Washington, DC: U.S. Department of Education (ERIC Document Reproduction Service No. ED 401 270).Google Scholar
  16. Ginsburg, H. P., & Amit, A. (2008). What is teaching mathematics to young children? A theoretical perspective and case study. Journal of Applied Developmental Psychology, 29, 274–285.CrossRefGoogle Scholar
  17. Graeber, A. O. (1999). Forms of knowing mathematics: What preservice teachers should learn. Educational Studies in Mathematics, 38, 189–208.CrossRefGoogle Scholar
  18. Hill, H. C. (2009). Fixing teacher professional development. Phi Delta Kappan, 90, 470–476.Google Scholar
  19. Heddens, J. W. (1986). Bridging the gap between the concrete and the abstract. Arithmetic Teacher, 34, 14–17.Google Scholar
  20. Kansanen, P. (2002). Didactics and its relation to educational psychology: Problems in translating a key concept across research communities. International Review of Education, 48, 427–441.CrossRefGoogle Scholar
  21. Kansanen, P. (2009). Subject-matter didactics as a central knowledge base for teachers, or should it be called pedagogical content knowledge? Pedagogy, Culture & Society, 17, 29–39.Google Scholar
  22. Kennedy, M. M. (1998). Education reform and subject matter knowledge. Journal of Research in Science Teaching, 35, 249–263.CrossRefGoogle Scholar
  23. Kinach, B. M. (2002). A cognitive strategy for developing pedagogical content knowledge in the secondary mathematics methods course: Toward a model of effective practice. Teaching and Teacher Education, 18, 51–71.CrossRefGoogle Scholar
  24. Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., et al. (2008). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100(3), 716–725.CrossRefGoogle Scholar
  25. Kyriacou, C., & Goulding, M. (2009). The impact of the National Numeracy Strategy in England on pupils’ confidence and competence in early mathematics. Retrieved June 3, 2009 from http://www.emis.de/proceedings/PME28/PP/PP003_Kyriacou.pdf.
  26. Lee, J. (2004). Predictors of developmentally appropriate practice in teaching mathematics. Unpublished doctoral dissertation, Indiana State University, Terre Haute, IN.Google Scholar
  27. Lee, J. (2005). Correlations between kindergarten teachers’ attitudes toward mathematics and teaching mathematics. Journal of Early Childhood Teacher Education, 23(2), 173–184.CrossRefGoogle Scholar
  28. Lee, J., Lee, J. O., & Collins, D. (2009). Tangrams: Enhancing children’s spatial sense. 86(2), 92–94.Google Scholar
  29. Lee, J., Lee, J. O., & Fox, J. (2009b). Time here, time there, time everywhere; Teaching young children time through daily routine. Childhood Education, 85(2), 191–192.Google Scholar
  30. Lee, J., Meadows, M., & Lee, J. O. (2003). What causes teachers to implement high quality mathematics education more frequently: Focusing on teachers’ pedagogical content knowledge. Washington, DC: ERIC Clearinghouse on Teaching and Teacher Education (ED 472 327).Google Scholar
  31. Leinhardt, G. (1986). Expertise in mathematics teaching. Educational Leadership, 43(7), 28–33.Google Scholar
  32. Mangione, P. L., & Maniates, H. (1993). Training teachers to implement developmentally appropriate practice. In S. Reifel (Ed.), Perspectives in developmentally appropriate practice: Advances in early education and day care (pp. 145–166). Greenwich, CT: JAI Press.Google Scholar
  33. Margetts, K. (2002). Transition to school: Complexity and diversity. European Early Childhood Education Research Journal, 10, 103–114.CrossRefGoogle Scholar
  34. Meyer, M. R. (1997). Mathematics in Context: Opening the gates to mathematics for all at the middle level. NASSP Bulletin, 81(586), 53–59.CrossRefGoogle Scholar
  35. Munn, P. (1997). Children’s beliefs about counting. In I. Thompson (Ed.), Teaching and learning early number (pp. 9–20). Philadelphia: Open University Press.Google Scholar
  36. National Association of State Directors of Teacher education, Certification (NASDTEC). (2004). Knowledgebase table E1: Professional development description. Whitinsville, MA: NASDTEC.Google Scholar
  37. National Board for Professional Teaching Standards. (2009). Better teaching, better learning, better schools. Retrieved on June 3, 2009 from http://www.nbpts.org.
  38. National Center for Education Statistics (NCES). (2001). Teacher preparation and professional development: 2000. NCES 2001-088. Washington, DC: U.S. Department of Education.Google Scholar
  39. National Commission on Excellence in Education. (1983). A Nation At Risk: The imperative for educational reform. Retrieved on June 2, 2009 from http://www.ed.gov/pubs/NatAtRisk/index.html.
  40. National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM.Google Scholar
  41. Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. Teaching and Teacher Education, 21(5), 509–523.CrossRefGoogle Scholar
  42. Petriwskyj, A., Thorpe, K., & Tayler, C. (2005). Trends in construction of transition to school in three western regions, 1990-2004. International Journal of Early Years Education, 13, 55–69.CrossRefGoogle Scholar
  43. Sherman, C. W., & Mueller, D. P. M. (1996). Developmentally appropriate practice and student achievement in inner-city elementary schools. Washington, DC: U.S. Department of Education (ED 401 354).Google Scholar
  44. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.Google Scholar
  45. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Education Review, 57, 1–22.Google Scholar
  46. Smith, K. H. (1998). The construction of a survey of pedagogical content knowledge in early childhood mathematics. Unpublished manuscript.Google Scholar
  47. Smith, K. H. (2000). Early childhood teachers’ pedagogical knowledge in mathematics: A quantitative study. Unpublished doctoral dissertation, Georgia State University, Atlanta.Google Scholar
  48. Stewart, W. (2008). Teachers lack maths know-how. Times Educational Supplement, 4790, 12.Google Scholar
  49. Strawhecker, J. (2005). Preparing elementary teachers to teach mathematics: How field experiences impact pedagogical content knowledge. IUMPST: The Journal, 4, 1–12.Google Scholar
  50. Terhart, E. (2003). Constructivism and teaching: A new paradigm in general didactics. Journal of Curriculum Studies, 35, 25–44.CrossRefGoogle Scholar
  51. Turnuklu, E. B., & Uesildere, S. (2007). The pedagogical content knowledge in mathematics: Preservice primary mathematics teachers’ perspectives in Turkey. IUMPST: The Journal, 1, 1–13.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Curriculum and Instruction-EC4, College of Education and Health ProfessionsUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations