pp 1–10 | Cite as

Influence of Floods and Growth Duration on the Productivity of Wet Grasslands of Echinochloa stagnina (Retz) P. Beauv. in an East African Floodplain

  • C. LeauthaudEmail author
  • P. Hiernaux
  • W. Musila
  • L. Kergoat
  • M. Grippa
  • S. Duvail
  • J. Albergel
  • N. O. Rode
Applied Wetland Science


Echinochloa stagnina (Retz) P. Beauv., a widespread semi-aquatic perennial grass, is a key species for the sustainability of many African wetlands. In an effort to assess interactions between hydrological regimes and management strategies targeting conservation, this study focuses on characterizing the growth of a typical East African wet grassland and describing the relative influence of floods and management practices on its growth rates. Naturally flooded grassland, subjected to a factorial design protocol with different levels of irrigation and cutting frequencies, was sampled during 15 months in the Tana River Delta, Kenya. Statistical analyses of the data, using linear mixed models accounting for temporal auto-correlation, were undertaken. Reduced cutting frequencies slightly increased growth rates, except under water-limited conditions. Increased water supply had a positive effect on growth rates, the latter noting a five- and ten-fold increase from water-limited to water non-limited to flooded conditions. Floods impacted grasslands by increasing growth rates, which attained very high values of 225 kgDM ha−1 day−1, extending growth period and limiting the negative effect of severe phytomass removal through clipping. These results support the view that rangeland and water management for the Tana River Delta, and more widely for tropical floodplain grasslands, should be jointly undertaken.


Growth rates Grazing Irrigation Kenya Net primary productivity Pastoralism Tana River Delta 



This work would not have been possible without the consent and help of the Onkolde villagers. We thank our assistants K. Otoi (field work), M. Obunga and C. Chesire (phytomass drying and weighing), the Botanical department of the National Museums of Kenya for botanical expertise (Q. Luke) and C. Dejean (irrigation scheme). This research was funded by the French Ministry of Environment in the framework of the “Eaux et Territoires” program, as part of the GEOPAR project, by the Research Institute for Development and by the LISAH laboratory. N. O. Rode acknowledges funding from the CeMEB LabEx/University of Montpellier.

Supplementary material

13157_2019_1148_MOESM1_ESM.doc (134 kb)
ESM 1 (DOC 134 kb)


  1. Bonis-Charancle, J.-M. (1994). Gestion des ressources naturelles : la r la rion de des bourgoutiressources naturellesay be found in the Revue durgoutiressources naturellesay be found in the online 47(4): 42525: 4Google Scholar
  2. Brouwer J (2014) Wetlands and drylands in the Sahel: the urgent need for good joint governance. In: The governance of rangelands. Routledge, pp 130–147Google Scholar
  3. Duvail S, Médard C, Hamerlynck O, Wanja Nyingi D (2012) Land and water grabbing in an East African coastal wetland: the case of the Tana Delta. Water Alternatives 5(2)Google Scholar
  4. Ellenbroek GA (1987) Ecology and productivity of an African wetland system. The Kafue flats Zambia. Dr W. Junk Publishers, DordrechtCrossRefGoogle Scholar
  5. Ellery K, Ellery WN, Rogers KH, Walker BH (1991) Water depth and biotic insulation: major determinants of back-swamp plant community composition. Wetlands Ecology and Management 1(3):149–162CrossRefGoogle Scholar
  6. Ellison L (1960) Influence of grazing on plant succession of rangelands. The Botanical Review 26(1):1–78CrossRefGoogle Scholar
  7. François J, Rivas A, Compère R (1989) Le pâturage semi-aquatique à Echinocloa stagnina (Retz.) Beauv. Etude approfondie de la plante "Bourgou" et des bourgoutières situées en zone lacustre du Mali. Bulletin des recherches agronomiques de gembloux 24(2):145–189Google Scholar
  8. Fynn RWS, Murray-Hudson M, Dhliwayo M, Scholte P (2015) African wetlands and their seasonal use by wild and domestic herbivores. Wetlands Ecology and Management 23(4):559–581CrossRefGoogle Scholar
  9. Hiernaux P, Diarra L (1983) Pâturages de la zone d’inondation du Niger. In Wilson, R.T., de Leeuw, P.N., and deHaan, C. (eds.). Recherches sur les systèmes des zones arides du Mali: résultats préliminaires. Rapport de recherche 5. ILCA, Addis Abeba, Ethiopia,pp. 42–48Google Scholar
  10. Hiernaux P, Diarra L (1986) Bilan de cinq années de recherches (sept.1979-sept.1984) sur la production végétale des parcours des plaines d’inondation fleuve Niger au Mali central. Programme document AZ 142, Centre International pour l’élevage en Afrique, PO Box 60, Bamako, MaliGoogle Scholar
  11. Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecology letters 8(1):23–29CrossRefGoogle Scholar
  12. Imevbore AMA, Bakare O (1974) A pre-impoundment study of swamps in the Kainji Lake Basin. African Journal of Tropical Hydrobiology and Fisheries 3(1):79–93Google Scholar
  13. Kenya Soil Survey (1984a) Vegetation and present land-use map - Garsen, 810 1:50000. Series Y731a, sheet 179/3Google Scholar
  14. Kenya Soil Survey (1984b) Vegetation and present land-use map - Witu, 812 1:50000. Series Y731a, sheet 179/4Google Scholar
  15. Lauenroth WK, Sala OE (1992) Long‐term forage production of North American shortgrass steppe. Ecological applications 2(4):397–403Google Scholar
  16. Leauthaud C, Duvail S, Hamerlynck O, Paul JL, Cochet H, Nyunja J et al (2013a) Floods and livelihoods: the impact of changing water resources on wetland agro-ecological production systems in the Tana River Delta, Kenya. Global Environmental Change 23(1):252–263CrossRefGoogle Scholar
  17. Leauthaud C, Belaud G, Duvail S, Moussa R, Grunberger O, Albergel J (2013b) Characterizing floods in the poorly gauged wetlands of the Tana River Delta, Kenya, using a water balance model and satellite data. Hydrology and Earth System Sciences 17(8):3059CrossRefGoogle Scholar
  18. Leauthaud C, Demarty J, Cappelaere B, Grippa M, Kergoat L, Velluet C et al (2015) Revisiting historical climatic signals to better explore the future: prospects of water cycle changes in Central Sahel. Proceedings of the International Association of Hydrological Sciences 371:195–201CrossRefGoogle Scholar
  19. Leauthaud C, Kergoat L, Hiernaux P, Grippa M, Musila W, Duvail S, Albergel J (2018) Modelling the growth of floodplain grasslands to explore the impact of changing hydrological conditions on vegetation productivity. Ecological Modelling 387:220–237CrossRefGoogle Scholar
  20. Maingi JK, Marsh SE (2002) Quantifying hydrologic impacts following dam construction along the Tana River, Kenya. Journal of Arid Environments 50(1):53–79CrossRefGoogle Scholar
  21. Mefit-Babtie (1983) Development studies in the Jonglei canal area. Technical assistance contract for range ecology survey, livestock investigations and water supply. Final report, volume 2 background and volume 3 vegetation studies. Mefit-Babtie SRL, Glasgow, Rome and Khartoum, and Executive Organ of the National Council for Development of the Jonglei Canal Area, Khartoum, Sudan, Ministry of Finance and Economic Planning, Government of the Democratic Republic of the SudanGoogle Scholar
  22. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: wetlands and water: synthesis. World Resources Institute, Washington, DCGoogle Scholar
  23. Moritz M, Scholte P, Hamilton IM, Kari S (2013) Open access, open systems: pastoral management of common-pool resources in the Chad basin. Human Ecology 41:351–365CrossRefGoogle Scholar
  24. Morton AJ, Obot EA (1984) The control of Echinochloa stagnina (Retz.) P. Beauv. By harvesting for dry season livestock fodder in Lake Kainji, Nigeria - a modelling approach. Journal of Applied Ecology 21:687–694CrossRefGoogle Scholar
  25. Penning de Vries, F. W. T., & Djitèye, M. A. (1982). La productivité des pâturages Sahéliens: une étude des sols, des végétations et de l'exploitation de cette ressource naturelleGoogle Scholar
  26. Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 grass Echinochloa polystachya on the Amazon floodplain. Ecology 72(4):1456–1463CrossRefGoogle Scholar
  27. Pompeo MLM, Henry R, Moschini-Carlos V (2001) The water level influence on biomass of Echinochloa polystachya (POACEAE) in the Jurumirim reservoir (Sao Paulo, Brazil). Revista Brasileira de Biologia 61(1):19–26CrossRefGoogle Scholar
  28. Potter HL (1985) Aspects of climate, herbage growth and animal production in a semi-arid area of Kenya. Ph.D. thesis, University of Nairobi, Nairobi, KenyaGoogle Scholar
  29. R Development Core Team, R (2013) RA Lang Environ Stat Comput, 55, 275–286Google Scholar
  30. Rebelo LM, McCartney MP, Finlayson CM (2010) Wetlands of sub-Saharan Africa: distribution and contribution of agriculture to livelihoods. Wetlands Ecology and Management 18(5):557–572CrossRefGoogle Scholar
  31. Rousset F, Ferdy JB (2014) Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37(8):781–790CrossRefGoogle Scholar
  32. Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1(2):103–113Google Scholar
  33. Scholte P (2005) Floodplain rehabilitation and the future of conservation & development. Adaptive management of success in Waza-Logone, Cameroon. Tropical resource management papers 67. Wageningen University and Research Centre, Wageningen, The Netherlands. 344 pp. Available at:
  34. Scholte P (2007) Maximum flood depth characterizes above-ground biomass in African seasonally shallowly flooded grasslands. Journal of Tropical Ecology 23(1):63–72CrossRefGoogle Scholar
  35. Silva TS, Costa MP, Melack JM (2009) Annual net primary production of macrophytes in the eastern Amazon floodplain. Wetlands 29(2):747–758CrossRefGoogle Scholar
  36. Sinclair ARE (1979) The eruption of the ruminants. In: Sinclair ARE, Norton-Griffiths M (eds) Serengeti, dynamics of an ecosystem. University of Chicago Press, Chicago, pp 82–103Google Scholar
  37. van Wijngaarden W (1985) Elephants-trees-grass-grazers: relationships between climate, soil, vegetation and large herbivores in a semi-arid savanna ecosystem. ITC Publ. No. 4, Enschede, NetherlandsGoogle Scholar
  38. Wallace LL (1990) Comparative photosynthetic responses of big bluestem to clipping versus grazing. Journal of Range Management 43:58–61CrossRefGoogle Scholar
  39. World Commission on Dams (2000) Dams and Development: a new framework for decision-making: the report of the world commission on dams. EarthscanGoogle Scholar

Copyright information

© Society of Wetland Scientists 2019

Authors and Affiliations

  1. 1.CIRAD, UMR G-EAUTunisTunisie
  2. 2.G-EAU, AgroParisTech, Cirad, IRD, IRSTEA, Montpellier SupAgroUniv MontpellierMontpellierFrance
  3. 3.Pastoralisme ConseilCaylusFrance
  4. 4.Kenya Water Towers AgencyNairobiKenya
  5. 5.Géosciences Environnement Toulouse (GET), CNRS, IRDUniversité de ToulouseToulouseFrance
  6. 6.IRD, UMR Patrimoines locaux et gouvernance (PALOC), IRD, MNHNParisFrance
  7. 7.LISAH, Univ Montpellier, INRA, IRD, Montpellier SupAgroMontpellierFrance
  8. 8.CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv MontpellierMontpellierFrance

Personalised recommendations