Advertisement

Wetlands

pp 1–12 | Cite as

Biogeochemical Characteristics of the Last Floating Coastal Bog Remnant in Europe, the Sehestedt Bog

  • Gijs van DijkEmail author
  • Christian Fritz
  • Nicko Straathof
  • Bas van de Riet
  • Niels Hogeweg
  • Sarah F. Harpenslager
  • Jan G. M. Roelofs
  • Karl-Ernst Behre
  • Leon P. M. Lamers
Original Research

Abstract

With the current risks caused by sea level rise and increased extreme weather events, the study of natural coastal systems has never been more important. Erosion and anthropogenic forcing led to disappeared of the majority of coastal bogs in Europe. Here, we report on case study of a unique bog remnant still under influence by seawater which floats during storm floods. We investigated biogeochemical characteristics and discuss mechanisms that influence buoyancy, which is of vital importance for the conservation of the bog and can provide insights into the functioning of coastal bogs and potential consequences of future sea level rise. The studied area is characterized by a steep salinity gradient and marine clay deposits provide the ‘hinge’ that allows the upper peat layers to float. Our results show out that buoyancy is driven by a combination of factors: the density differences, desiccation along the edges and methane production. If the ability to float is reduced in coastal bogs, the impact of erosion and the sum of several other processes (i.e., peat decomposition, salt stress, clay sedimentation, internal eutrophication and reduced methanogenesis) can cause a shift in environmental conditions and lead to loss of this unique habitat and its characteristic species.

Keywords

Salinity Raised bog Buoyancy Sehestedter Aussendeichsmoor Coastal wetland 

Notes

Acknowledgements

The authors would like to thank Rüdiger Schuhmann and Heinz-Hermann Kathmann from Nationalparkverwaltung Niedersächsisches Wattenmeer in Wilhelmshaven for granting permission to sample and for providing additional information of the area. The authors would like to thank P. van der Ven and J. Eygensteyn for assistance in the laboratory.

References

  1. Aben RCH, N Barros, E van Donk, T Frenken, S Hilt, G Kazanjian, LPM Lamers, ETHM Peeters, JGM Roelofs, LN de Senerpont Domis, S Stephan, M Velthuis, DB Van de Waal, M Wik, BF Thornton, J Wilkinson, T DelSontro, S Kosten (2017) Cross continental increase in methane ebullition under climate change, nature communications 8, Article number: 1682,  https://doi.org/10.1038/s41467-017-01535-y
  2. Albrecht F, Wahl T, Jensen J, Weisse R (2011) Determining sea level change in the German bight. Ocean Dynamics 61:2037–2050CrossRefGoogle Scholar
  3. Ardón M, Morse JL, Colman BP, Bernhardt ES (2013) Drought induced saltwater incursion leads to increased wetland nitrogen export. Global Change Biology 19:2976–2985CrossRefGoogle Scholar
  4. Baeteman C (1981) De Holocene ontwikkeling van de westelijke kustvlakte (België). PhD Thesis. Vrije Universiteit Brussel, Faculteit Wetenschappen, Vakgroep Geologie: Brussel. 297 pp.Google Scholar
  5. Bakker M, Van Smeerdijk DG (1982) A palaeoecological study of a Late Holocene section from “Het Ilperveld”, western Netherlands. Review of Palaeobotany and Palynology 36: 95–163CrossRefGoogle Scholar
  6. Behre KE (2003) Eine neue Meeresspiegelkurve für die südliche Nordsee: Transgressionen und Regressionen in den letzten 10.000 Jahren. Probleme der Küstenforschung im südlichen Nordseegebiet 28:9–63Google Scholar
  7. Behre KE (2005) Das Moor von Sehestedt. Landschaftsgeschichte am östlichen Jadebusen – Oldenburger Forschungen NF 21:1–145Google Scholar
  8. Behre KE (2007a) A new Holocene Sea-level curve for the southern North Sea. Boreas 36(1):82–102CrossRefGoogle Scholar
  9. Behre KE (2007b) Die Auswirkungen der Wintersturmfluten 2006/2007 auf das Sehestedter Außendeichsmoor (SO-Jadebusen). Drosera:17–24Google Scholar
  10. Behre KE, Kucan D (1999) Neue Untersuchungen am Außendeichsmoor bei Sehestedt am Jadebusen – Probleme der Küstenforschung im südlichen Nordseegebiet 26: 35–64Google Scholar
  11. Borger GJ (1992) Draining—digging—dredging: the creation of a new landscape in the peat areas of the Low Countries, 153–157 in Verhoeven JTA ed., Fens and bogs in the Netherlands: vegetation, history, Nutrient Dynamics and Conservation, DordrechtCrossRefGoogle Scholar
  12. Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde ‚3. Aufl. Berlin, Wien, New YorkGoogle Scholar
  13. Breathnach C, Rochefort L (2008) Revegetation of bare peat substrates: the case of a saline bog, New Brunswick. Pp. 3718–376 in proceedings of the 13th international peat congress: after wise use? The future of peatlands, volume 1: Oral presentations, Tullamore, Ireland, 8–13 June 2008. C. Farrell & J. Feehan (eds.). International Peat Society, Jyväskylä, FinlandGoogle Scholar
  14. Chambers LG, Reddy KR, Osborn TZ (2011) Short-term response of carbon cycling to salinity pulses in a freshwater wetland. Soil Science Society of America Journal 75:2000–2007CrossRefGoogle Scholar
  15. Church JA et al. (2013) Sea level change. Cambridge University press, CambridgeGoogle Scholar
  16. Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In A.J.E. Smith (ed.), Bryophyte ecology, 229–289. Chapman Hall, LondonCrossRefGoogle Scholar
  17. Damman AWH (1977) Geographical changes in the vegetation pattern of raised bogs in the bay of Fundy region of Maine and New Brunswick. Vegetatio 35:137–151CrossRefGoogle Scholar
  18. Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biology and Biochemistry 25:321–326CrossRefGoogle Scholar
  19. Fritz C, Campbell DI, Schipper LA (2008) Oscillating peat surface levels in a restiad peatland, New Zealand – magnitude and spatiotemporal variability. Hydrological Processes 22(17):3264–3274CrossRefGoogle Scholar
  20. Gaffney V, Thomson K, Fitch S (eds.) 2007, Mapping Doggerland: the Mesolithic landscapes of the southern North Sea, Archaeopress, OxfordGoogle Scholar
  21. Grasshoff K, Johannsen H (1977) A new sensitive method for the determination of ammonia in sea water. Water Research 2:516Google Scholar
  22. Groenendijk H, Vos P (2013) Early medieval peatbog reclamation in the Groningen Westerkwartier (northern Netherlands). Settlement and Coastal Research in the Southern North Sea Region (SCN) 36:136–156Google Scholar
  23. Hájek M, Horsák M, Hájková P, Díte D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics 8:97–91CrossRefGoogle Scholar
  24. Harpenslager SF, Van Dijk G, Kosten S, Roelofs JGM, Smolders AJP, Lamers LPM (2015) Simultaneous high C fixation and high C emissions in Sphagnum mires. Biogeosciences, 12, 4739–4749CrossRefGoogle Scholar
  25. Henriksen A (1965) An automated method for determining low-level concentrations of phosphate in fresh and saline waters. Analyst 90:29–34CrossRefGoogle Scholar
  26. Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardón M, Hopfensperger KN, Lamers LPM, Gell P (2015) A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6(10):206  https://doi.org/10.1890/ES14-00534.1 CrossRefGoogle Scholar
  27. Hoag RS, Price JS (1997) The effects of matrix diffusion on solute transport and retardation in undisturbed peat in laboratory columns. Journal of Contaminant Hydrology 28:193–205CrossRefGoogle Scholar
  28. Kellner E, Price JS, Waddington JM (2004) Pressure variations in peat as a result of gas bubble dynamics. Hydrological Processes 18:2599–2605CrossRefGoogle Scholar
  29. Kettridge N, Binley A (2011) Characterization of peat structure using X-ray computed tomography and its control on the ebullition of biogenic gas bubbles. J Geophys Res 116 (G01024)Google Scholar
  30. Künnemann C (1941) Das Sehestedter Moor und die Ursachen seiner Zerstörung – Probleme der Küstenforschung im südlichen Nordseegebiet 2: 37–58Google Scholar
  31. Lamers LPM, Van Roozendaal SME, Roelofs JGM (1998) Acidification of freshwater wetlands: combined effects of non-airborne sulfur pollution and desiccation. Water, Air, and Soil Pollution, 105, 95–106Google Scholar
  32. Lamers LPM, Bobbink R, Roelofs JGM (2000) Natural nitrogen filter fails in polluted raised bogs. Global Change Biology 6(5):583–586CrossRefGoogle Scholar
  33. Lamers LPM, Falla SJ, Samborska EM, Van Dulken LAR, Van Hengstum G, Roelofs JGM (2002) Factors controlling the extent of eutrophication and toxicity in sulfate-polluted freshwater wetlands. Limnology and Oceanography, 47, 585–593CrossRefGoogle Scholar
  34. Lamers LPM, Govers LL, Janssen ICIM, Geurts JJM, Van der Welle MEW, Van Katwijk MM, Van der Heide T, Roelofs JGM, Smolders AJP (2013) Sulfide as a soil phytotoxin—a review. Front Plant Sci 4:268Google Scholar
  35. Leenders KAHW (2013) Verdwenen venen. Een onderzoek naar de ligging en exploitatie van thans verdwenen venen in het gebied tussen Antwerpen, Turnhout, Geertruidenberg en Willemstad (1250–1750) Picture Publichers, Woudrichem, The NetherlandsGoogle Scholar
  36. Limpens J, Berendse F, Klees H (2003) N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. The New Phytologist 157:339–347CrossRefGoogle Scholar
  37. Meier-Uhlherr R, Schulz C, Luthart V (2011) Steckbriefe Moorsubstrate. HNE Eberswalde (Hrsg.), BerlinGoogle Scholar
  38. Ours DP, Siegel DI, Glaser PH (1997) Chemical dilation and the dual porosity of humified bog peat. Journal of Hydrology 196:348–360CrossRefGoogle Scholar
  39. Pons LJ (1992) Holocene peat formation in the lower parts of the Netherlands. In Verhoeven JTA (ed.), Fens and bogs in the Netherlands: vegetation, history, Nutrient Dynamics and Conservation. Kluwer Academic Publishers, Dordrecht: 7–79CrossRefGoogle Scholar
  40. Reid C (1913) Submerged forests. Cambridge University Press, CambridgeGoogle Scholar
  41. Rhein M et al (2013) Observations: ocean. Pages 255–310. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  42. Rysgaard S, Thastum P, Dalsgaard T, Christensen PB, Sloth NP, Rysgaard S (1999) Effects of salinity on NH4 + adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22(1):21CrossRefGoogle Scholar
  43. Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51CrossRefGoogle Scholar
  44. Smolders AJP, Tomassen HBM, Lamers LPM, Lomans BP, Roelofs JGM (2002) Peat bog restoration by floating raft formation: the effects of groundwater and peat quality. Journal of Applied Ecology 39:391–401CrossRefGoogle Scholar
  45. Smolders AJP, Lamers LPM, Lucassen ECHET, Van der Velde G, Roelofs JGM (2006) Internal eutrophication: how it works and what to do about it - a review. Chemistry and Ecology 22(2):93–111CrossRefGoogle Scholar
  46. Strack M, E Kellner JM Waddington (2005) Dynamics of biogenic bubbles in peat and their effects on peatland biogeochemistry. Global Biogeochemical Cycles, 19, GB1003Google Scholar
  47. Technicon (1969) Industrial method 33–69W, nitrate + nitrite in water. Technicon Autoanalyser methodology (ed. Technicon), pp. 1–2. Technicon Corporation, KarrytownGoogle Scholar
  48. Tokida T, Miyazaki T, Mizoguchi M, Seki K (2005) In situ accumulation of methane bubbles in a natural wetland soil. European Journal of Soil Science 56(3):389–396CrossRefGoogle Scholar
  49. Tokida T, Miyazaki T, Mizoguchi M, Nagata O, Takakai F, Kagemoto A, Hatano R (2007) Falling atmospheric pressue as a trigger for methane ebulltion from peatland. Global Biogeochemical Cycles, 21, GB2003CrossRefGoogle Scholar
  50. Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2003) Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: role of high levels of atmospheric N deposition. Journal of Ecology 91:357–370CrossRefGoogle Scholar
  51. Van Dijk G, Smolders AJP, Loeb R, Bout A, Roelofs JGM, Lamers LPM (2015) Effects of salinization on nitrogen, phosphorus and carbon biogeochemistry of coastal freshwater wetlands; constant versus fluctuating salinity levels. Biogeochemistry 126:71.  https://doi.org/10.1007/s10533-015-0140-1 CrossRefGoogle Scholar
  52. Van Dijk G, Nijp JJ, Metselaar K, Lamers LPM, Smolders AJP (2017) Salinity-induced increase of the hydraulic conductivity in the hyporheic zone of coastal wetlands. Hydrological processes,  https://doi.org/10.1002/hyp.11068 CrossRefGoogle Scholar
  53. Van Geel B, Borger GJ (2002) Sporen van grootschalige zoutwinning in de Kop van Noord-Holland. Westerheem 51:242–260Google Scholar
  54. Vermeer M, Rahmstorf S (2009) Global Sea level linked to global temperature. Proceedings of the National Academy of Sciences USA 106:21527–21532CrossRefGoogle Scholar
  55. Vos PC (2015) Origin of the Dutch coastal landscape. Long-term landscape evolution of the Netherlands during the Holocene, described and visualized in national, regional and local palaeogeographical map series. PhD thesis Utrecht University. Deltares, Utrecht / Bakhuis, Groningen, 359 pGoogle Scholar
  56. Weston NB, RE Dixon, SB Joye (2006) Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization Journal of Geophysical Research, 111Google Scholar
  57. Wilcox DA (1984) The effects of NaCl deicing salts on Sphagnum recurvum. Environmental and Experimental Botany 24:295–304CrossRefGoogle Scholar
  58. Wilcox DA (1986) The effects of deicing salts on vegetation in Pinhook bog, Indiana. Canadian Journal of Botany 64(4):865–874CrossRefGoogle Scholar
  59. Wilcox DA, Andrus RE (1987) The role of Sphagnum fimbricatum in secondary succession in a road-salt impacted bog. Canadian Journal of Botany 65:2270–2275CrossRefGoogle Scholar
  60. Williams RT, Crawford RL (1984) Methane production in Minnesota peatlands. Applied and Environmental Microbiology, 1266-1271Google Scholar

Copyright information

© Society of Wetland Scientists 2018

Authors and Affiliations

  • Gijs van Dijk
    • 1
    • 2
    Email author
  • Christian Fritz
    • 2
    • 3
  • Nicko Straathof
    • 4
  • Bas van de Riet
    • 1
    • 5
  • Niels Hogeweg
    • 5
    • 6
  • Sarah F. Harpenslager
    • 2
    • 7
  • Jan G. M. Roelofs
    • 1
    • 2
  • Karl-Ernst Behre
    • 8
  • Leon P. M. Lamers
    • 2
    • 1
  1. 1.B-WARE Research CentreRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Aquatic Ecology and Environmental Biology, Institute of Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
  3. 3.Centre for Energy and Environmental StudiesUniversity of GroningenGroningenThe Netherlands
  4. 4.Natuurmonumenten‘s GravelandThe Netherlands
  5. 5.Landschap Noord-HollandHeilooThe Netherlands
  6. 6.PWNVelserbroekThe Netherlands
  7. 7.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
  8. 8.Lower Saxony Institute for Historical Coastal ResearchWilhelmshavenGermany

Personalised recommendations