, Volume 38, Issue 6, pp 1269–1283 | Cite as

From Mountains to Plains: Ecological Structure of the South Ural (Russia) Fen Vegetation

  • Sergey Znamenskiy
  • Tatiana Ivchenko
General Wetland Science


This study focuses on comparing the driving ecological factors and community diversity of fen vegetation from the plain part of the South Ural region with those of the mountain fen vegetation, previously described by us (Ivchenko and Znamenskiy Russian Journal of Ecology 47:453–459, 2016), by means of vegetation data clustering and gradient analysis. The indicator values by several authors (H Ellenberg, E Landolt, LG Ramensky, DN Tsyganov) and WorldClim bioclimatic variables were used to determine the ecological meaning of the gradients. We found that the main gradient for both plain and mountain fen vegetation is the “poor-rich fen” gradient, which depends on local substrate chemical composition. The second gradient is associated with moisture, which tends to increase consistently both from mountains towards plains and across plains from peneplain towards West Siberian Lowland. The moisture gradient proved to be unrelated to precipitation, which increase linearly from plains towards mountains. The community diversity in the mountain part is higher than in the plain part. The fen vegetation of plains and mountains overlap in ordination space but a half of the types described for mountain fen vegetation do not occur on plains, while two types of plain fen vegetation from the West Siberian Lowland are absent on mountains.


Gradient Indicator values Bioclimatic variables Mire Wetland Biogeography 



We would like to thank Grigory Tyusov (Komarov Botanical Institute of RAS, St.Petersburg) and Tatiana Kurchenko (“Kray Ra” Publishing, Mapping Department, Chelyabinsk) for help with digital maps, Dr. Mikhail Zobkov (Northern Water Problems Institute of the Karelian Research Centre RAS, Petrozavodsk) for help with WorldClim database. We also thank Olga Kislova (Karelian Research Centre RAS, Petrozavodsk), Dr. Evgenia Sokolova (Foreign Languages Institute, Petrozavodsk State University) and Dr. Robert Szava-Kovats (University of Tartu, Estonia) for their indispensable help with language editing. Special thanks for two anonymous reviewers whose valuable comments helped us to improve the manuscript substantially.

The fieldwork was performed with support from the Russian Foundation for Basic Research (grant 14-04-00362); ex situ treatment and data processing were funded by the Russian National Research Program, projects 01201458546 and 0221-2017-0048.

Supplementary material

13157_2018_1048_MOESM1_ESM.pdf (7 kb)
Online Resource 1 (PDF 6 kb)
13157_2018_1048_MOESM2_ESM.pdf (27 kb)
Online Resource 2 (PDF 26 kb)
13157_2018_1048_MOESM3_ESM.pdf (32 kb)
Online Resource 3 (PDF 32 kb)
13157_2018_1048_MOESM4_ESM.pdf (28 kb)
Online Resource 4 (PDF 27 kb)
13157_2018_1048_MOESM5_ESM.pdf (42 kb)
Online Resource 5 (PDF 41 kb)


  1. Alisov BP (1956) Klimat SSSR (the climate of the USSR). Nauka, MoscowGoogle Scholar
  2. Almendinger JE, Leete JH (1998) Peat characteristics and groundwater geochemistry of calcareous fens in the Minnesota River basin, U.S.A. Biogeochemistry 43:17–41CrossRefGoogle Scholar
  3. Amon JP, Thompson CA, Carpenter QJ, Miner J (2002) Temperate zone fens of the glaciated Midwestern USA. Wetlands 22:301–317CrossRefGoogle Scholar
  4. Bergamini A, Peintinger M, Schmid B, Urmi E (2001) Effects of management and altitude on bryophyte species diversity and composition in montane calcareous fens. Flora 196:180–193CrossRefGoogle Scholar
  5. Borisevich DV (1968) Rel’ef i geologicheskoe stroenie (landforms and geological structure). In: Gerasimov IP (ed) Ural i Priural’e (Urals and Cis-Ural). Nauka, Moscow, pp 19–81Google Scholar
  6. Bragazza L, Gerdol R (1996) Response surfaces of plant species along water-table depth and water pH gradients in a poor mire on the southern alps. Annales Botanici Fennici 33:11–20Google Scholar
  7. Conradi T, Friedmann A (2013) Plant communities and environmental gradients in mires of the Ammergauer alps (Bavaria, Germany). Tuexenia 33:133–163Google Scholar
  8. Czerepanov SK (1995) Vascular plants of Russia and adjacent states. Cambridge University Press, New YorkGoogle Scholar
  9. du Rietz GE (1949) Huvudenheter och huvudgranser i svensk myrvegetation. Svensk Botanisk Tidskrift 43:279–304Google Scholar
  10. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67(3):345–366.[0345:SAAIST]2.0.CO;2Google Scholar
  11. Ellenberg H, Weber HE, Dull R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen im Mitteleuropa. Scripta Geobotanica 18:1–248Google Scholar
  12. Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37:4302–4315. CrossRefGoogle Scholar
  13. Gorchakovskii PL, Gribova SA, Isachenko TI et al (1975) Rastitel'nost' Urala na novoi geobotanicheskoi karte (the vegetation of Ural on the new vegetation map). Botanicheskii zhurnal 60:1385–1400Google Scholar
  14. Grokhlina TI, Khanina LG (2006) Avtomatizatsiya obrabotki geobotanicheskikh opisaniy po ecologicheskim shkalam (Automatization of vegetation data processing by indicator values) Materialy II vserossiyskoy nauchnoy konferentsii. Izdatelstvo Mariyskogo gosudarstvennogo universiteta. Yoshkar-Ola, pp 87–89Google Scholar
  15. Hájek M, Hekera P, Hájková P (2002) Spring fen vegetation and water chemistry in the western Carpathian flysch zone. Folia Geobotanica 37:205–224CrossRefGoogle Scholar
  16. Hájek M, Horsák M, Hajková P, Ditě D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardize fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics 8:97–114CrossRefGoogle Scholar
  17. Hájková P, Hájek M, Apostolova I (2006) Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role. Plant Ecology 184:11–130CrossRefGoogle Scholar
  18. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):1–9Google Scholar
  19. Heikkilä H (1987) The vegetation and ecology of mesotrophic and eutrophic fens western in Finland. Annales Botanici Fennici 24:155–175Google Scholar
  20. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965–1978. CrossRefGoogle Scholar
  21. Ignatov MS, Afonina OM, Ignatova EA et al (2006) Check-list of mosses of east Europe and north Asia. Arctoa 15:1–130. CrossRefGoogle Scholar
  22. Ilomets M, Truus L, Pajula R, Sepp K (2010) Species composition and structure of vascular plants and bryophytes on the water level gradient within a calcareous fen in North Estonia. Estonian Journal of Ecology 59:19–38. CrossRefGoogle Scholar
  23. Ivchenko TG (2009) Khorologia bolotnykh kompleksov Ilmenskogo zapovednika i eyo otobrazhenie na geobotanicheskikh kartakh (chorology of Ilmensky Zapovednik mire complexes and its reflection on vegetation maps). Entsiklopediya, ChelyabinskGoogle Scholar
  24. Ivchenko T, Znamenskiy S (2015) Fitotsenoticheskoe raznoobrazie klyuchevykh bolot gorno-taezhnogo poyasa Yuzhnogo Urala (Phytocoenotic diversity of spring fens of south Urals mountain taiga belt). Botanicheskii zhurnal 100:1167–1184Google Scholar
  25. Ivchenko T, Znamenskiy S (2016) Ecological structure of plant communities on spring fens in the mountain taiga belt of the southern Urals. Russian Journal of Ecology 47:453–459. CrossRefGoogle Scholar
  26. Jabłońska E, Pawlikowski P, Jarzombkowski P, Chormański P, Okruszko T,  Kłosowski S, (2011) Importance of water level dynamics for vegetation patterns in a natural percolation mire (Rospuda fen, NE Poland). Hydrobiologia 674(1):105-117.
  27. Jiménez-Alfaro B, Fernández Pascual E, Díaz Gonzalez TE, Pérez Haase A, Ninot JM (2012) Diversity of fen vegetation and related plant specialists in mountain refugia of the Iberian peninsula. Folia Geobotanica 47:403–419. CrossRefGoogle Scholar
  28. Jiménez-Alfaro B, Hájek M, Ejrnaes R, Rodwell J, Pawlikowski P, Weeda E, Laitinen J, Moen A, Bergamini A, Aunina L, Sekulová L, Tahvanainen T, Gillet F, Jandt U, Dítě D, Hájková P, Corriol G, Kondelin H, Díaz T (2014) Biogeographic patterns of base-rich fen vegetation across Europe. Applied Vegetation Science 17:367–380. CrossRefGoogle Scholar
  29. Johnson J (1996) Phytosociology and gradient analysis of a subalpine treed fen in Rocky Mountain National Park, Colorado. Canadian Journal of Botany 74:1203–1218. CrossRefGoogle Scholar
  30. Körner C (2004) Mountain biodiversity, its causes and function. Ambio, Special Report 13:11–17Google Scholar
  31. Kruskal JB, Wish M (1978) Multidimensional scaling. Sage University Paper series on Quantitative Applications in the Social Sciences, number 07–011. Sage Publications, Newbury ParkGoogle Scholar
  32. Kulikov PV (2005) Konspekt flory Chelyabinskoi oblasti: sosudistye rasteniya (The conspectus of Chelyabinsk oblast flora, vascular plants). Geotur, EkaterinburgGoogle Scholar
  33. Landolt E (2010) Flora indicativa. Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Haupt Verlag, Bern, Stuttgart, WienGoogle Scholar
  34. McCune B, Mefford MJ (2011) PC-ORD. Multivariate analysis of ecological data. Version 6.22. MjM Software, Gleneden Beach, Oregon, USAGoogle Scholar
  35. Moen A (1990) The plant cover of the boreal uplands of Central Norway, 1, vegetation ecology of Sølendet nature reserve: haymaking fens and birch woodlands. Gunneria 63:1–451Google Scholar
  36. Nekola JC (1999) Paleorefugia and neorefugia: the influence of colonization history on community pattern and process. Ecology 80:2459–2473.[2459:PANTIO]2.0.CO;2Google Scholar
  37. Nekola J (2004) Vascular plant compositional gradients within and between Iowa fens. Journal of Vegetation Science 15:771–180. CrossRefGoogle Scholar
  38. Økland RH (1989) A phytoecological study of the mire Kisselbergmosen, SE. Norway. I. Introduction, flora, vegetation, and ecological conditions. Sommerfeltia 8:1–172Google Scholar
  39. Peterka T, Plesková Z, Jiroušek M, Hájek M (2014) Testing floristic and environmental differentiation of rich fens on the bohemian massif. Preslia 86:337–366Google Scholar
  40. Peterka T, Hájek M, Jiroušek M, Jiménez-Alfaro B, Aunina L, Bergamini A, Dítě D, Felbaba-Klushyna L, Graf U, Hájková P, Hettenbergerová E, Ivchenko TG, Jansen F, Koroleva NE, Lapshina ED, Lazarević PM, Moen A, Napreenko MG, Pawlikowski P, Plesková Z, Sekulová L, Smagin VA, Tahvanainen T, Thiele A, Biţǎ-Nicolae C, Biurrun I, Brisse H, Ćušterevska R, de Bie E, Ewald J, FitzPatrick Ú, Font X, Jandt U, Kącki Z, Kuzemko A, Landucci F, Moeslund JE, Pérez-Haase A, Rašomavičius V, Rodwell JS, Schaminée JHJ, Šilc U, Stančić Z, Chytrý M (2017) Formalized classification of European fen vegetation at the alliance level. Applied Vegetation Science 20:124–142. CrossRefGoogle Scholar
  41. Ramensky LG, Tsatsenkin IA, Chizhikov ON, Antipin NA (1956) Ekologicheskaya otsenka kormovykh ugodiy po rastitel’nomu pokrovu (Ecological evaluation of rangelands by their vegetation cover). Selkhozgiz, MoscowGoogle Scholar
  42. Rozbrojová Z, Hájek M (2008) Changes in nutrient limitation of spring fen vegetation along environmental gradients in the west Carpathians. Journal of Vegetation Science 19:613–620. CrossRefGoogle Scholar
  43. Rybníček K (1974) Die Vegetation der Moore im südlichen Teil der Böhmisch-Mährischen Höhe. Akademia, PrahaGoogle Scholar
  44. Sjörs H (1948) Myrvegetation i bergslagen. Acta Phytogeographica Suecica 21:1–299Google Scholar
  45. Sjörs H (1952) On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2:241–258CrossRefGoogle Scholar
  46. Sneath PHA, Sokal RR (1973) Numerical taxonomy. W. H. Freeman, San FranciscoGoogle Scholar
  47. Steffen H (1922) Zur weiteren Kenntnis der Quellmoore des Preussischen Landrückens mit hauptsächlicher Berücksichtigung ihrer Vegetation, Botanische. Archiv 1:261–313Google Scholar
  48. Surkov VS, Zhebo OG (1981) Fundament i razvitie platformennogo chekhla Zapadno-Sibirskoi plity (The basement and development of West Siberian tectonic plate covering). Nedra, MoscowGoogle Scholar
  49. Sysoev AD (1959) Ocherki fizicheskoi geografii Chelyabinskoi oblasti (Essay on physical geography of Chelyabinsk oblast) Chelyabinskoe knizhnoe izdatelstvo, ChelyabinskGoogle Scholar
  50. Tahvanainen T (2004) Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of north-eastern Fennoscandian shield. Folia Geobotanica 39:353–369. CrossRefGoogle Scholar
  51. Tsyganov DN (1983) Fitoindikatsiya ekologicheskikh rezhimov v podzone khvoino-shirokolistvennykh lesov (Phytoindication of ecological regimes in coniferous and deciduous forests subzone). Nauka, MoscowGoogle Scholar
  52. Wheeler BD (1984) British fens: a review. In: Moore PD (ed) European Mires. Academic Press, London, pp 237–281CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2018

Authors and Affiliations

  1. 1.Institute of Biology of the Karelian Research Center of the Russian Academy of SciencesPetrozavodskRussian Federation
  2. 2.Komarov Botanical Institute of the Russian Academy of SciencesSt. PetersburgRussian Federation

Personalised recommendations