, Volume 38, Issue 6, pp 1171–1182 | Cite as

Exploring Social-Ecological Complexities of Wetlands of International Importance (Ramsar Sites): the Carlos Anwandter Sanctuary (Valdivia, Chile) as a Case Study

  • V. H. Marín
  • L. E. Delgado
  • A. Tironi-Silva
  • C. M. Finlayson
Socioeconomic aspects of Wetlands


Complexity is an accepted characteristic of social-ecological systems. However, its analysis has been mostly theoretical with few empirical studies. Complex systems share three features: radical openness (the system cannot be understood unless an extended, global, environment is considered), radical uncertainty (emergence and non-linearity make them impossible to be fully predictable) and contextuality (no unique way to know them). Social-ecological systems listed as important under international treaties, such as wetlands within the Ramsar Convention, share these features, which can be explored using case studies. In this article, we explore the complexities derived from the 2004 ecological change (i.e. the local collapse of an emblematic bird species) in the Carlos Anwandter Sanctuary, a Chilean coastal wetland, by means of two ten-year windows (scientific publications and Internet web pages). We based our analysis on the question: what is the state of knowledge, ten years after its ecological change? Results show many answers; science has several hypotheses with low testing possibilities. Still, civil society decided that only one (a forestry company guilty of producing the change) is valid. We discuss the role of international organizations when dealing with social-ecological conflicts and identify the conundrum that can develop in response to how these are handled.


Social-ecological systems Wetlands Complexity Ramsar Post-normal science 



This research was funded by Universidad de Chile (Enlace FONDECYT, VID 2015, grant number ENL001/15).


  1. Allan C (2009) Reviewing adaptive management through a wicked lens. In: Lane M, Robinson C, Taylor B (eds) Contested country: local and regional natural resources management in Australia. CSIRO Publishing, Brisbane, pp 215–226Google Scholar
  2. Audouin M, Preiser R, Nienaber S, Downsborough L, Lanz J, Mavengahama S (2013) Exploring the implications of critical complexity for the study of social-ecological systems. Ecology and Society 18(3):12. doi: 10.5751/ES-05434-180312 CrossRefGoogle Scholar
  3. Bennett EM, Cramer W, Begossi A, Cundill G, Díaz S, Egoh BN, Geijzendorffer IR, Krug CB, Lavorel S, Lazoz E, Lebel L, Martín-López B, Meyfroidt P, Mooney HA, Nel JL, Pascual U, Payet K, Pérez Harguindeguy N, Peterson GD, Prieur-Richard H-A, Reyers B, Roebeling P, Seppelt R, Solan M, Tschakert P, Tscharntke T, Turner BL II, Verburg PH, Viglizzo EF, White PC, Woorward G (2015) Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Current Opinion in Environment Sustainability 14:76–85CrossRefGoogle Scholar
  4. Capra F, Luisi PL (2014) The systems view of life. A unifying vision. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. Carpenter SR, Stanley EH, Vander Zanden MJ (2011) State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annual Review of Environment and Resources 36:75–99CrossRefGoogle Scholar
  6. CCS (2016a) Consejo Científico Social. Humedal Río Cruces.
  7. CCS (2016b) UACh entregó diagnóstico del estado del humedal del Río Cruces.
  8. CEACHILE (2012) Humedales del Río Cruces.
  9. CH_RC (2016) Sistematización consultas públicas. Programa de Desarrollo Comunitario Humedal Río Cruces.
  10. Chu D, Strand R, Fjelland R (2003) Theories of complexity. Common denominators of complex systems. Complexity 8:19–30CrossRefGoogle Scholar
  11. CONAF (2016) Santuario de la naturaleza Carlos Anwandter. Informe monitoreo avifauna Abril 2016. Parques Nacionales. Centro de Documentación. Corporación Nacional Forestal. Ministerio de Agricultura. Gobierno de Chile.
  12. Cox B (2013) Condenan a Celulosa Arauco por desastre ambiental en Río Cruces de Valdivia el 2004.
  13. Delgado LE, Marín VH (2005) FES-sistema: un concepto para la incorporación de las sociedades humanas en el análisis medioambiental de Chile. Revista Ambiente y Desarrollo de CIPMA 2:18–22Google Scholar
  14. Delgado LE, Marín VH (2013) Interannual changes in the habitat area of the black-necked swan, Cygnus melancoryphus, in the Carlos Anwandter sanctuary, southern Chile: a remote sensing approach. Wetlands 33:91–99CrossRefGoogle Scholar
  15. Delgado LE, Marín VH, Bachmann PL, Torres-Gomez M (2009) Conceptual models for ecosystem management through the participation of local social actors: the Río cruces wetland conflict. Ecology and Society 14(1):50CrossRefGoogle Scholar
  16. Delgado LE, Sepúlveda MB, Marín VH (2013) Provision of ecosystem services by the Aysén watershed, Chilean Patagonia, to rural households. Ecosystem Services 5:102–109CrossRefGoogle Scholar
  17. Delgado LE, Tironi A, Vila I, Verardi G, Ibañez C, Agüero B, Marín VH (2014) El Humedal del Río Cruces, Valdivia, Chile: una síntesis ecosistémica. Latin American Journal of Aquatic Research 42:937–949CrossRefGoogle Scholar
  18. EMOL (2013) Condenan a Celulosa Arauco por daño ambiental que provocó muerte de cisnes en Valdivia.
  19. EMOL (2016) Penetración de internet en Chile alcanza el 84% con un fuerte uso de las redes móviles.
  20. Finlayson CM (1996a). The Montreux record: a mechanism for supporting the wise use of wetlands. In Proceedings of the 6th meeting of the conference of the contracting parties of the convention on wetlands. Technical sessions: reports and presentations, 19–27 March 1996, Brisbane, Qld, Australia. Vol. 10/12 B, pp. 32–37. (Ramsar convention bureau: gland, Switzerland)Google Scholar
  21. Finlayson CM (1996b) Framework for designing a monitoring programme. In: Monitoring Mediterranean wetlands: a methodological guide. (ed) P. T. Vives, pp. 25–34. MedWet publication, wetlands international: Slimbridge, UK; and ICN: Lisbon, PortugalGoogle Scholar
  22. Finlayson CM (2012) Forty years of wetland conservation and wise use. Aquatic Conservation: Marine and Freshwater Ecosystems 22:139–143CrossRefGoogle Scholar
  23. Finlayson CM, Davidson N, Pritchard D, Milton R, MacKay H (2011) The Ramsar convention and ecosystem-based approaches for the wise use and sustainable development of wetlands. Journal of International Wildlife Law and Policy 14:176–198Google Scholar
  24. Finlayson CM, Capon SJ, Rissik D, Pittock J, Fisk G, Davidson NC, Bodmin KA, Papas P, Robertson HA, Schallenberg M, Saintilan N, Edyvane K, Bino G (2017) Adapting policy and management for the conservation of important wetlands under a changing climate. Marine and Freshwater Research. doi: 10.1071/MF16244
  25. Frame B, Brown J (2008) Developing post-normal technologies for sustainability. Ecological Economics 65:225–241CrossRefGoogle Scholar
  26. Gell PA, Finlayson CM, Davidson NC (2016) Understanding change in the ecological character of Ramsar wetlands: perspectives from a deeper time – synthesis. Marine and Freshwater Research 67:869–879CrossRefGoogle Scholar
  27. Geymonat L (2006) Historia de la filosofía y de la ciencia. Crítica S. L, BarcelonaGoogle Scholar
  28. Gonzalez AL, Farina JM (2013) Changes in the abundance and distribution of black-necked swans (Cygnus Melancoryphus) in the Carlos Anwandter nature sanctuary and adjacent wetlands, Valdivia, Chile. Waterbirds 36:507–514CrossRefGoogle Scholar
  29. Guimarães Pereira Â, Guedes Vaz S, Tognetti S (2006) Interfaces between science and society. Greenleaf Publishing, SheffieldGoogle Scholar
  30. Hauenstein E (2004) Antecedentes sobre Egeria densa (Cluchecillo), hidrófita importante en la alimentación del cisne de cuello negro. Gestión Ambiental 10:89–95Google Scholar
  31. Hesselink F, Goldstein W, van Kempen PP, Garnett T, Dela J (2006) Communication, education and public awareness (CEPA). A toolkit for National Focal Points and NBSAP coordinators. Convention on Biological Diversity, IUCN, CEC.
  32. Hettiarachchi M, Morrison TH, McAlpine C (2015) Forty-three years of Ramsar and urban wetlands. Global Environmental Change 32:57–66CrossRefGoogle Scholar
  33. Horwitz P, Finlayson CM, Weinstein P (2012) Healthy wetlands, healthy people. A review of wetlands and human health interactions. Ramsar technical report N° 6.
  34. Ibelings BW, Portielje R, Lammens EHRR, Noordhuis R, van den Berg MS, Joosse W, Meijer ML (2007) Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case stiudy. Ecosystems 10:4–16CrossRefGoogle Scholar
  35. Jones N, Clark JRA, Panteli M, Proikaki M, Dimitrakopoulos PG (2012) Local social capital and the acceptance of protected area policies: an empirical study of two Ramsar river delta ecosystems in northern Greece. Journal of Environmental Management 96:55–63CrossRefGoogle Scholar
  36. Kay JJ (2000) Ecosystems as self-organising holarchic open systems: narratives and the law of thermodynamics. In: Jørgensen SE, Müller F (eds) Handbook of ecosystem theories. Lewis Publishers, Boca Raton, pp 135–159Google Scholar
  37. Kopf RK, Finlayson CM, Humphries P, Sims NC, Hladyz S (2015) Anthropocene baselines: assessing change and managing biodiversity in human-dominated aquatic ecosystems. Bioscience 65:798–811CrossRefGoogle Scholar
  38. Lagos NA, Paolini P, Jaramillo E, Lovengreen C, Duarte C, Contreras H (2008) Environmental processes, water quality degradation, and decline of waterbird populations in the Rio cruces wetland, Chile. Wetlands 28:938–950CrossRefGoogle Scholar
  39. Liu J, Dietz TH, Carpenter SR, Alberti M, Folke C, Moran E, Pell AN, Deadman P, Kratz T, Lubchenco J, Ostrom E, Ouyang ZH, Provencher W, Redman CHL, Schneider SH, Taylor WW (2007) Complexity of coupled human and natural systems. Science 317:1513–1516CrossRefGoogle Scholar
  40. Lopetegui EJ, Vollmann RS, Cifuentes HC, Valenzuela CD, Suarez NL, Herbach EP, Huepe JU, Jaramillo GV, Leischner BP, Riveros RS (2007) Emigration and mortality of black-necked swans (Cygnus Melancoryphus) and disappearance of the macrophyte Egeria Densa in a Ramsar wetland site of southern Chile. Ambio 37:607–609CrossRefGoogle Scholar
  41. Lynch AJJ, Kalumanga E, Ospina GA (2016) Socio-ecological aspects of sustaining Ramsar wetlands in three biodiverse developing countries. Marine and Freshwater Research 67:850–868CrossRefGoogle Scholar
  42. Marín VH, Delgado LE (2013) From ecology to society and back: the (in)convenient hypothesis syndrome. International Journal of Sustainable Development 16:46–65CrossRefGoogle Scholar
  43. Marín V, Tironi A, Delgado L, Contreras M, Novoa F, Torres-Gómez M, Garreaud R, Vila I, Serey I (2009) On the sudden disappearance of Egeria Densa from Ramsar wetland site of southern Chile: a climate event trigger model. Ecological Modelling 220:1752–1763CrossRefGoogle Scholar
  44. Marín VH, Delgado LE, Vila I, Tironi A, Barrera V, Ibañez C (2014) Regime shifts of Cruces River wetland ecosystem: current conditions, future uncertainties. Latin American Journal of Aquatic Research 42:160–171CrossRefGoogle Scholar
  45. Mauerhofer V, Kim RE, Stevens C (2015) When implementation works: a comparison of Ramsar convention implementation in different continents. Environmental Science & Policy 51:95–105CrossRefGoogle Scholar
  46. MEA (2005) Ecosystems and human well-being: wetlands and water synthesis. Millennium Ecosystem Assesment World Resources Institute, Washington, DCGoogle Scholar
  47. Mulsow S, Grandjean M (2006) Incompatibility of sulphate compounds and soluble bicarbonate salts in the Rio cruces waters: an answer to the disappearance of Egeria Densa and black-necked swans in a RAMSAR sanctuary. Ethics in Science and Environmental Politics 6:5–11CrossRefGoogle Scholar
  48. Nelson TJ (2016) What is the role of consensus in science?
  49. OECD (2005) Environmental performance reviews. Chile. Conclusions and recommendations. Organisation for Economic Co-operation and Development UN Economic Commission for Latin America and the Caribbean.
  50. OECD (2017) Organisation for Economic Co-operation and Development.
  51. Opazo K (2014) Aplicación del ciclo adaptativo de Holling a los sistemas socio-ecológicos de la sub-cuenca del humedal del Río Cruces. Seminario de Título para optar al título de Biólogo Ambiental con mención en medio ambiente. Facultad de Ciencias, Universidad de ChileGoogle Scholar
  52. Palma ATC, Schwarz AO, Farina JM (2013a) Experimental evidence of the tolerance to chlorate of the aquatic macrophyte Egeria Densa in a Ramsar wetland in southern Chile. Wetlands 33:129–140CrossRefGoogle Scholar
  53. Palma ATC, Schwarz AO, Henriquez L, Alvarez X, Farina JM (2013b) Do subtoxic levels of chlorate influence the desiccation tolerance of Egeria Densa? Environmental Toxicology and Chemistry 32:417–422CrossRefGoogle Scholar
  54. Palma-Fleming H, Foitzick M, Palma-Larrea X, Quiroz-Reyes E (2013) The fate of alpha-Pinene in sediments of a wetland polluted by bleached pulp mill effluent: is it a new clue on the "Carlos Anwandter" nature sanctuary wetland case, Valdivia, south of Chile? Water, Air, and Soil Pollution 224(10). doi: 10.1007/s11270-013-1729-4
  55. Pinochet D, Ramirez C, Mac Donald R, Riedel L (2005) Concentraciones de elementos minerales en Egeria densa Planch. colectada en el santuario de la Naturaleza Carlos Anwandter, Valdivia, Chile. Agro Sur 32:80–86CrossRefGoogle Scholar
  56. Preiser R (2012) The problem of complexity. Re-thinking the role of critique. Dissertation presented for the degree of Doctor of Philosophy at Stellenbosh University, South AfricaGoogle Scholar
  57. Ramírez C, Carrasco E, Silvana M, Palacios N (2006) La desaparición del luchecillo (Egeria densa) del Santuario del Río Cruces (Valdivia, Chile): Una hipótesis plausible. Ciencia & Trabajo 8:79–86Google Scholar
  58. Ramsar (2010) Managing wetlands: frameworks for managing wetlands of international importance and other wetland sites. Ramsar handbooks for the wise use of wetlands, vol 18, 4th edn. Ramsar Convention Secretariat, GlandGoogle Scholar
  59. Ramsar (2017) The Ramsar Convention on wetlands of International Importance.
  60. Ravetz J (2006) Post-normal science and the complexity of transitions towards sustainability. Ecological Complexity 3:275–284CrossRefGoogle Scholar
  61. Risk MJ, Burchell M, de Roo K, Nairn R, Tubrett M, Forsterra G (2010) Trace elements in bivalve shells from the Río cruces, Chile. Aquatic Biology 10:85–97CrossRefGoogle Scholar
  62. Rogers KH, Luton R, Biggs H, Biggs R, Blignaut S, Choles AG, Palmer CG, Tangwe P (2013) Fostering complexity thinking in action research for change in social–ecological systems. Ecology and Society 18(2):31CrossRefGoogle Scholar
  63. RSIS (2017) Carlos Anwandter sanctuary. Ramsar Sites Information Service.
  64. Sáez RE (2010) La OECD y el ingreso de Chile. Estudios Internacionales 166:93–112Google Scholar
  65. SAG (2005) Evaluación de la condición Ambiental del Río Cruces, Informe Final Parte A. Servicio Agrícola Ganadero, Gobierno de ChileGoogle Scholar
  66. San Martín C, Ramirez C, Carrasco E, Vidal O, Toledo G (2010) Efecto de la radiación solar en la desaparición de Egeria densa (Hydrocharitaceae) desde el humedal del río Cruces (Valdivia, Chile). Agro-Ciencia. Rev Chil Cs Agropec 26:15–24Google Scholar
  67. Schaefer K, Einax JW (2010) Analytical and chemometric characterization of the Cruces River in South Chile. Environmental Science and Pollution Research 17:115–123CrossRefGoogle Scholar
  68. Schmitz OJ (2010) Resolving ecosystem complexity. Princeton University Press, PrincetonGoogle Scholar
  69. Schwarz AO, Urrutia H, Vidal JM, Pérez N (2012) Chlorate reduction capacity and characterisation of chlorate reducing bacteria communities in sediments of the río cruces wetland in southern Chile. Water Research 46:3283–3292CrossRefGoogle Scholar
  70. Sepúlveda C, Bettati B (2005) El desastre ecológico del Santuario del Río Cruces: Trizadura institucional y retroceso democrático. Revista Ambiente y Desarrollo 20-21(3–1):62–68Google Scholar
  71. SER (2004) Society for Ecological Restoration International and IUCN Commission on Ecosystem Management. 2004. Ecological restoration, a means of conserving biodiversity and sustaining livelihoods. Society for Ecological Restoration International,IUCN, Tucson, Gland Google Scholar
  72. Summers RS (1999) Formal legal truth and substantive truth in judicial fact-finding- their divergence in some particular cases. Law and Philosophy 18:497–511Google Scholar
  73. UACH (2005) Estudio sobre origen de mortalidades y disminución poblacional de aves acuáticas en el Santuario de la Naturaleza Carlos Anwandter en la provincia de Valdivia.
  74. Van den Belt M (2004) Mediated modelling. A system dynamics approach to environmental concensus building. Island Press, Washington, DCGoogle Scholar
  75. Vervoort JM, Keuskamp DH, Kok K, van Lammeren R, Stolk T, Veldkamp TA, Rekveld J, Schelfhout R, Teklenburg B, Cavalheiro Borges A, Jánoškóva A, Wits W, Assmann N, Abdi Dezfouli E, Cunningham K, Nordeman B, Rowlands H (2014) A sense of change: media designers and artists communicating about complexity in social-ecological systems. Ecology and Society 19(3):10CrossRefGoogle Scholar
  76. Waltner-Toews D, Kay JJ, Lister NME (2008) The ecosystem approach. Complexity, uncertainty, and managing for sustainability. Columbia University Press, New YorkGoogle Scholar
  77. Yarrow M, Marín VH, Finlayson M, Tironi A, Delgado LE, Fischer F (2009) The ecology of Egeria densa Planchon (Liliopsida: Alismatales): a wetland ecosystem engineer. Revista Chilena de Historia Natural 82:299–313CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2017

Authors and Affiliations

  • V. H. Marín
    • 1
  • L. E. Delgado
    • 1
    • 2
  • A. Tironi-Silva
    • 2
  • C. M. Finlayson
    • 3
    • 4
  1. 1.Laboratorio de Modelación Ecológica, Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileSantiagoChile
  2. 2.Fundación CTFSantiagoChile
  3. 3.Institute for Land, Water & SocietyCharles Sturt UniversityAlburyAustralia
  4. 4.IHE Delft, Institute for Water EducationDelftThe Netherlands

Personalised recommendations