Advertisement

Wetlands

, Volume 38, Issue 6, pp 1133–1145 | Cite as

The Effects of Area and Habitat Heterogeneity on Bird Richness and Composition in High Elevation Wetlands (“Bofedales”) of the Central Andes of Peru

  • Grace P. Servat
  • Renzo Alcocer
  • Melvi V. Larico
  • Magaly E. Olarte
  • Reynaldo Linares-Palomino
  • Alfonso Alonso
  • Karim Ledesma
Wetlands in the Developing World

Abstract

We assessed area and habitat heterogeneity effects on avian richness and composition in bofedales that differed in size and microhabitat diversity. We analyzed data collected in 2 seasons and 24 bofedales using General Linear Models, Ordinary Least Square models to establish the relationship of predictor variables on richness and Akaike Information Criterion for model selection. We evaluate composition classifying species into groups using Bray Curtis ordination, followed by Multiple Response Permutation Procedure to test for differences among groups, and Indicator Species Analysis to identify species. Bofedales differed in richness (F = 5.1, p < 0.001) and microhabitat diversity (F = 23.4, p < 0.001), but no seasonal differences emerged (p > 0.05). The best model indicates that 54% of variance in richness was explained by area and microhabitat diversity, however, a tendency to decrease in microhabitat diversity as area increases, suggests a relatively more important role of area. Results are supported by composition, as microhabitats not only differed pairwise (T = −94.14, A = 0.601, p < 0.001) and had significant indicator species (p < 0.05), but because its differential contribution to richness, as some microhabitats were more speciose than others. As such, few species-rich microhabitats may contribute more to richness than many species-poor ones which is not predicted by the habitat heterogeneity hypothesis. Disentangling the influence of area and habitat heterogeneity on species richness is important to establish conservation priorities that ensure bofedales integrity under imminent climate change.

Keywords

Diversity Microhabitats Cover Cushion bogs Indicator species 

Resumen

Evaluamos el efecto del área y la heterogeneidad del hábitat en la riqueza y composición de aves en bofedales que difieren en tamaño y diversidad de microhábitats. Los datos recopilados en 2 estaciones y 24 bofedales fueron analizados usando Modelos Generales Lineales, Modelos de Mínimos Cuadrados Ordinarios para establecer la relación entre las variables predictivas y la riqueza, y el Criterio de Información de Akaike para seleccionar los modelos. Evaluamos la composición de especies clasificándolas en grupos con el Ordenamiento de Bray Curtis, seguido por el Análisis de Permutación de Respuesta Múltiple para detectar diferencias entre los grupos, y el Análisis de Especies Indicadoras para identificar las especies. Los bofedales difieren en riqueza (F = 5.1, p < 0.001) y diversidad de microhábitats (F = 23.4, p < 0.001), pero no hallamos diferencias estacionales (p > 0.05). El modelo seleccionado indica que el área y la diversidad de microhábitats explican 54% de la varianza en la riqueza, sin embargo, encontramos una tendencia inversa entre la diversidad de microhábitats y el área, la cual sugiere un papel relativamente más importante del área en la riqueza de especies. Nuestros resultados son respaldados por los datos de composición, ya que los microhábitats no sólo fueron diferentes en comparaciones pareadas (T = −94.14, A = 0.601, p < 0.001) y estuvieron representados significativamente por especies indicadoras (p < 0.05), sino que contribuyeron diferencialmente con la riqueza. Así, pocos microhábitats ricos en especies contribuirían más a la riqueza que varios microhábitats pobres en especies lo cual no concuerda con las predicciones de la hipótesis de heterogeneidad del hábitat. Determinar la influencia que el área y la heterogeneidad tienen en la riqueza de especies es importante para establecer prioridades de conservación que garanticen la integridad de los bofedales ante el inminente cambio climático.

Palabras clave

Diversidad Microhábitats Cobertura  Bofedales Especies indicadoras 

Notes

Acknowledgements

This study is a contribution of the Biodiversity Monitoring and Assessment Program (BMAP) from the Center of Conservation and Sustainability of the Smithsonian Conservation Biology Institute and PERU-LNG. We are thankful to all BMAP personnel in Lima, Ayacucho, and Washington DC, for their support with field logistics throughout the study, and T. Erwin for reviewing an early version of the manuscript. We specially thank past and present administrators of the program for their contribution at different stages of the project. Authorizations to conduct fieldwork were issued by the Direccion General de Flora y Fauna Silvestre (RD 405–2012-AG-DGFFS-GDEFFS). This is contribution No. 43 of the Peru Biodiversity Program of the Smithsonian Conservation Biology Institute.

References

  1. Allouche O, Kalyuzhny O, Moreno-Rueda G, Pizarro M, Kadmon R (2012) Area–heterogeneity tradeoff and the diversity of ecological communities. Proceedings of the National Academy of Sciences of the United States of America 109:17,495–17,500.Google Scholar
  2. Angermeier PL, Winston MR (1998) Local vs. regional influences on local diversity in stream fish communities of Virginia. Ecology 79:911–927CrossRefGoogle Scholar
  3. Arrhenius O (1921) Species and area. Journal of Ecology 9:95–99CrossRefGoogle Scholar
  4. Bar-Massada A, Wood EM (2014) The richness–heterogeneity relationship differs between heterogeneity measures within and among habitats. Ecography 37:528–535CrossRefGoogle Scholar
  5. Bartoń K (2016) MuMIn: Multi-Model Inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn. Accessed 17 Jan 2017
  6. Benham PM, Witt CC (2016) The dual role of Andean topography in primary divergence: functional and neutral variation among populations of the hummingbird, Metallura tyrianthina. BMC Evolutionary Biology 16:22. doi: 10.1186/s12862-016-0595-2 CrossRefPubMedPubMedCentralGoogle Scholar
  7. BirdLife International (2016) IUCN Red List for birds. http://www.birdlife.org. Accessed 25 May 2016.
  8. Bury J, Mark BG, Mark C, Kenneth RAY, McKenzie JM, Barrie AF, Polk MH (2013) New geographies of water and climate change in Peru: Coupled natural and social transformations in the Santa River watershed. Annals of the Association of American Geographers 103:363–374CrossRefGoogle Scholar
  9. Brooks TM, Mittermeier RA, da Fonseca GAB (2006) Global biodiversity conservation priorities. Science 313:58–61CrossRefGoogle Scholar
  10. Browman D (1974) Pastoral nomadism in the Andes. Current Anthropology 15:188–196CrossRefGoogle Scholar
  11. Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, et al. (2009) gplots: Various R programming tools for plotting data. R package version 2.7.4.Google Scholar
  12. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48:1079–1087CrossRefGoogle Scholar
  13. Chapin FS, Sala OE, Burke IC, Grime JP, Hooper DU, Lauenroth WK, Lombard A, Mooney HA, Mosier AR, Naeem S, Pacala SW, Roy J, Steffen WL, Tilman D (1998) Ecosystem consequences of changing biodiversity. Bioscience 48:45–52CrossRefGoogle Scholar
  14. Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 1:3–21CrossRefGoogle Scholar
  15. Connor EF, McCoy ED (1979) The statistics and biology of the species-area telationship. Am Nat 113(6):791–833Google Scholar
  16. Del Hoyo J, Sargatal E, Christie J, de Juana E (2016) Handbook of the Birds of the World Alive. http://www.hbw.com/node/56369. Accessed 25 May 2016
  17. eBird (2016) eBird: An online database of bird distribution and abundance [web application]. eBird, Cornell Lab of Ornithology, Ithaca. http://www.ebird.org. Accessed 25 May 2016
  18. Foote L, Krogman N (2006) Wetlands in Canada’s western boreal forest: Agents of change. The Forestry Chronicle 82:825–833CrossRefGoogle Scholar
  19. Fox J and Weisberg S (2011) An R companion to applied regression, second edition. Sage, Thousand OaksGoogle Scholar
  20. Gibbons R (2012) Bird ecology and conservation in Peru’s high Andean peat lands. Ph.D. Dissertation. Louisiana State University College of Science, Department of Biological Sciences and Museum of Natural Science. http://etd.lsu.edu/docs/available/etd-04102012-135844
  21. Gleason HA (1925) Species and area. Ecology 6:66–74CrossRefGoogle Scholar
  22. Graham CH, Loiselle BA, Velásquez-Tibatá J, Cuesta F (2011) Species distribution modeling and the challenge of predicting future distributions. In: Herzog SK, Martinez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical Andes. IAI-SCOPE, São José dos Campos, pp 295–310Google Scholar
  23. Herzog SK, Martinez R, Jørgensen PM, Tiessen H (2012) Climatic change and biodiversity in the tropical Andes. Inter-American institute for global change research (IAI) and scientific committee on problems of the environment (SCOPE). MacArthur Foundation, ChicagoGoogle Scholar
  24. Herzog SK, Kattan GH (2011) Patterns of diversity and endemism in the birds of the tropical Andes. In: Herzog SK, Martinez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical Andes. Paris: Inter-American institute for global change research (IAI) and scientific committee on problems of the environment (SCOPE). Chicago, MacArthur Foundation, pp 245–259Google Scholar
  25. Holt RD (2009) Bringing the Hutchinsonian niche into the twenty-first century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences, USA 106:19,659–19,665CrossRefGoogle Scholar
  26. Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22:415–427CrossRefGoogle Scholar
  27. Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401CrossRefGoogle Scholar
  28. Intergovernmental Panel on Climate Change (2014) Climate Change 2014: synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)). Geneva, p 151Google Scholar
  29. Kadmon RA, Allouche O (2007) Integrating the effects of area, isolation and habitat heterogeneity on species diversity: A unification of island biogeography and niche theory. American Naturalist 170:443–454CrossRefGoogle Scholar
  30. Keddy P (2010) Wetland Ecology: Principles and Conservation. Cambridge University Press, Cambridge, p 1–497Google Scholar
  31. Kohn DD, Walsh DM (1994) Plant species richness–the effect of island size and habitat diversity. Journal of Ecology 82:367–377CrossRefGoogle Scholar
  32. Lennon JL, Koleff P, Greenwood JJD, Gaston KJ (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. J Anim Ecol 70(6):966–979Google Scholar
  33. MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598CrossRefGoogle Scholar
  34. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, Monographs in population biologyGoogle Scholar
  35. McCunne B, Grace JB (2002) Analysis of ecological communities; MjM Software, Gleneden Beach, Oregon, www.pcord.com, p 304
  36. McCunne B, Mefford MJ (2011) PC-ORD. multivariate analysis of ecological data. Version 6. MjM Software, Gleneden Beach, Oregon.Google Scholar
  37. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:249–253CrossRefGoogle Scholar
  38. Mitsch WJ, Gosselink JG (1993) Wetlands. WileyGoogle Scholar
  39. Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, Rillig MC (2014) Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution 4:3514–3524CrossRefGoogle Scholar
  40. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938CrossRefGoogle Scholar
  41. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens H, Wagner H (2012) Package ‘vegan’. Community Ecology Package (Version 2.0–6)Google Scholar
  42. Preston FW (1960) Time and space and the variation of species. Ecology 41:611–627CrossRefGoogle Scholar
  43. Preston FW (1962) The canonical distribution of commonness and rarity: part I. Ecology 43:185–215CrossRefGoogle Scholar
  44. R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. ISBN: 3-900,051-07-0
  45. Rahbek C (2005) The role of spatial scale and the perception of large-scale species–richness patterns. Ecological Letters:224–239Google Scholar
  46. Remsen JV, Areta I, Cadena CD, Jaramillo A, Nores M, Pacheco JF, Pérez-Emán J, Robbins MB, Stiles FG, Stotz DF, Zimmer KJ. Version (2016) A classification of the bird species of South America. American Ornithologists’ Union. (2017) http://www.museum.lsu.edu/~Remsen/SACCBaseline.html. Accessed 25 May 2016.
  47. Richards SA (2015) Likelihood and model selection. In: Fox GA, Negrete-Yankelevich S, Sosa VJ (eds) Ecological statistics: Contemporary theory and application. Oxford University Press, Oxford, pp 58–80Google Scholar
  48. Ricklefs RE, Schluter D (1993) Species diversity in ecological communities: Historical and geographical perspectives. University of Chicago Press, Chicago, p 414Google Scholar
  49. Ricklefs RE, Lovette IJ (1999) The role of island area per se and habitat diversity in the species-area relationship of four lesser Antillean faunal groups. Journal of Animal Ecology 68:1142–1160CrossRefGoogle Scholar
  50. Riffell SK, Keas BE, Burton TM (2001) Area and habitat relationships of birds in Great Lakes coastal wet meadows. Wetlands 21(4):492–507Google Scholar
  51. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press. IK, USAGoogle Scholar
  52. Ruthsatz B (2012) Vegetación y ecología de los bofedales Altoandinos de Bolivia. Phytocoenologia 42:133–179CrossRefGoogle Scholar
  53. Schwartz MW, Brigham CA, Hoeksema JD, Lyons KG, Mills MH, van Mantgem PJ (2000) Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia 122:297–305CrossRefGoogle Scholar
  54. Servat G, Alcocer R, Larico M, Olarte M, Hurtado N (2013) Richness and abundance of birds in bofedales within the area of influence of the PERU LNG pipeline in Abra Apacheta and Pampas–Palmitos Basin. In: Alonso A, Dallmeier F, Servat G (eds) Monitoring biodiversity: lessons from a Trans-Andean megaproject, pp 154–164Google Scholar
  55. Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal 27(379–423):623–656CrossRefGoogle Scholar
  56. Squeo FA, Warner BG, Aravena R, Espinoza D (2006) Bofedales: high altitude peatlands of the central Andes. Revista Chilena de Historia Natural 79:245–255CrossRefGoogle Scholar
  57. Simberloff D (1976) Experimental zoogeography of islands: Effects of island size. Ecology 57:629–648CrossRefGoogle Scholar
  58. Sokal RR, Rohlf FJ (2012) Biometry: the principles and practice of statistics in biological research. 4th edition. W. H. Freeman and Co., New York, p 937Google Scholar
  59. Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecological Letters 17:866–880CrossRefGoogle Scholar
  60. Tellería J, Venero JL, Santos T (2006) Conserving birdlife of Peruvian highland bogs: effects of patch size and habitat quality on species richness and bird numbers. Ardeola 53:271–283Google Scholar
  61. Terborgh J (1977) Bird species diversity on an Andean elevational gradient. Ecology 58:1007–1019CrossRefGoogle Scholar
  62. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31(1):79–92Google Scholar
  63. Thomas CD, Lennon LL (1999) Birds extend their ranges northwards. Nature 399:213CrossRefGoogle Scholar
  64. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302CrossRefGoogle Scholar
  65. Valencia N, Cano A, Delgado A, Trinidad H, Gonzales P (2013) Plant composition and coverage of bofedales in an East-West macro transect in the Central Andes of Peru. In: Alonso A, Dallmeier F, Servat G (eds) Monitoring biodiversity: lessons from a Trans-Andean megaproject. Smithsonian Press, pp 64–79Google Scholar
  66. Villarroel EK, Mollinedo PL, Domic AI, Capriles JM, and Espinoza C (2014) Local management of Andean wetlands in Sajama National Park, Bolivia: Persistence of the collective system in increasingly Family-oriented arrangements. Mt Res Dev 34(4):356–368Google Scholar
  67. Vuilleumier F (1970) Insular biogeography in continental regions I: The northern Andes of South America. The American Naturalist 104:373–388CrossRefGoogle Scholar
  68. Vuille M (2013) Climate change and water resources in the tropical Andes. Inter-American Development BankGoogle Scholar
  69. Vuille MF, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: Past, present and future. Earth Science Reviews 89:79–96CrossRefGoogle Scholar
  70. Watling JI, Donnelly MA (2006) Fragments as Islands: a Synthesis of Faunal Responses to Habitat Patchiness. Conservation Biology 20:1016–1025CrossRefGoogle Scholar
  71. Weberbauer A (1936) Phytogeography of the Peruvian Andes. In McBride JF (ed.) Flora of Peru. Field Museum of Natural History, Botanic Series Publications 351:13Google Scholar
  72. Williams CB (1964) Patterns in the balance of nature. Academic Press, LondonGoogle Scholar
  73. White EP, Adler PB, Lauenroth WK, Gill RA, Greenberg D, Kaufman DM, Rassweiler A, Rusak JA, Smith MD, Steinbeck JR, Waide RB, Yao J (2006) A comparison of the species-time relationship across ecosystems and taxonomic groups. Oikos 112(1):185–195Google Scholar
  74. Young KR (2012) Introduction to Andean geographies. In: Herzog SK, Martinez R, Jørgensen PM, Tiessen H (eds) Climatic change and biodiversity in the tropical Andes. Inter-American institute for global change research (IAI) and Scientific committee on problems of the environment (SCOPE). Chicago, MacArthur Foundation, pp 128–140Google Scholar
  75. Zuur AF, Leno EN, Ephick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1:3–14CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2017

Authors and Affiliations

  • Grace P. Servat
    • 1
    • 2
  • Renzo Alcocer
    • 3
  • Melvi V. Larico
    • 3
  • Magaly E. Olarte
    • 4
  • Reynaldo Linares-Palomino
    • 5
  • Alfonso Alonso
    • 1
  • Karim Ledesma
    • 5
  1. 1.Center for Conservation and SustainabilitySmithsonian Conservation Biology InstituteWashingtonUSA
  2. 2.Departamento de OrnitologíaMuseo de Historia Natural de la Universidad Nacional Mayor de San MarcosLimaPeru
  3. 3.Museo de Historia Natural de la Universidad Nacional de San Agustín de ArequipaArequipaPeru
  4. 4.Museo de Historia Natural de la Universidad Nacional San Antonio Abad del Cusco, Paraninfo Universitario, Plaza de ArmasCuscoPeru
  5. 5.Center for Conservation and SustainabilitySmithsonian Conservation Biology InstituteLimaPeru

Personalised recommendations